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1 Introduction

When a fluid is between a stationary surface and a moving surface, a Couette
flow is created. A 2D model could be a fluid sandwiched between stationary
bottom surface and a moving top surface with velocity U , as shown in Fig.1.

Figure 1: A 2D model of Coutte flow

The shear stress, τ , is a differentiable function of the distance from the
bottom surface, denoted by y. Consider a rectangular region inside the fluid,
if the shear stress at bottom of the region is τ , then the shear stress at an
infinitesimal length above is τ + (dτ/dy)∆y. Balancing the horizontal force
requires

0 = (τ +
dτ

dy
∆y)∆x− τ∆x =

dτ

dy
∆y∆x,

which implies
dτ

dy
= 0. (1)
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2 Newtonian fluid

Shear rate is defined as the rate at which horizontal velocity changes with respect
to height. If we let u(y) be the horizontal velocity as a function of height, then
shear rate is du/dy. A Newtonian fluid has property that its shear stress is
proportional to shear rate, which can be expressed as

τ = µ
du

dy
, (2)

where µ is the fluid’s viscosity. Combining Eq.1 and Eq.2 gives

d

dy
(µ
du

dy
) = 0,

which implies

µ
du

dy
= c, (3)

where c is a constant that can be determined by the boundary conditions u(0) =
0 and u(h) = U . This differential equation is easy enough to be solved using
technique of separation of variables, and the result is

u =
c

µ
y + k.

The boundary conditions u(0) = 0 and u(h) = U require k = 0 and c =
Uµ/h, so the specific solution is

u =
U

h
y. (4)

The linear relationship between horizontal velocity and height is the signa-
ture of a Coutte fluid of a Newtonian fluids. However, a fluid is not necessarily
Newtonian to behave Newtonian, that has linear u(y). A non-Newtonian fluid
may also behave Newtonian.

To analyze the behavior of Couette flow numerically, we can use program
languages to build a numerical model, which also helps us to see how changing
parameters affect the behavior of the fluid. A MATLAB function that solves
Eq.3 can be written as follow

function [y,u] = CoutteNewtonianFluid(U,h,mu)

figure(’DefaultAxesFontSize’,18)

%based on Example code 9.1

[y,u]=ode45(@der,[0,h],[0],[],U*mu/h,mu); %assuming c=U*mu/h

plot(u,y)

ylabel(’height (y) m’)

xlabel(’velocity (u) m/s’)

function uPrime=der(y,u,c,mu)

uPrime=c/mu;

end

end
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To see how different Newtonian fluids behave, let two surfaces separated by
h = 0.05 m, top surface moving at velocity U = 0.3 m/s, and viscosity of one
fluid µ1 = 8.90 × 10−4 kg/m · s, which is approximately the viscosity of water
at 25 ◦C, and another fluid µ2 = 1.50× 10−3 kg/m · s, which is the viscosity of
mercury. Following commands

[yw,uw] = CoutteNewtonianFluid(0.3,0.05,8.90e-4)

[ym,um] = CoutteNewtonianFluid(0.3,0.05,1.50e-3)

return argurments y and u as vectors, such that u(yi) ≈ ui. The solution is
shown in Fig.2 and u(y) is linear as expected in Eq.4. Also different Newto-
nian fluids behave the same in the Couette model regardless difference in their
viscosity. This can be checked by command uw-um, which returns a zero vector.

(a) Water (µ = 8.90× 10−4 kg/m · s) (b) Mercury (µ = 1.50×10−3 kg/m ·s)

Figure 2: The solution to Eq.3 with h = 0.05m, and U = 0.3m/s

Notice that we assume c = Uµ/h is known in the code used to solve Eq.3.
Yet, to get this relation we need to solve the differential equation explicitly and
apply the boundary conditions. However, there are ways to solve c numerically.

One way to search for the value of c is bisection method. Treat the fluid
velocity at top ut as a function of c, i.e., ut(c). To match the boundary condition
u(h) = U , there should be a c such that ut(c) = U . If we begin the search with a
proper interval [c1, c2], and suppose in this interval ut(c) is monotone, ut(c1)−U
and ut(c2)− U should have different sign. Then we do the same calculation at
the mid point,i.e., u3 = (u1 + u2)/2, and if (ut(c1) − U) and ut(c3) − U have
same sign, define a new interval [c3, c2]; otherwise, define the new interval to
be [c2, c3]. Repeat the process till the interval is small enough, which means
either end point of the last interval is close enough to the real value. Using this
method, an adapted code to solve Eq.3 can be

function [y,u,c] = CoutteNewtonianFluid2(U,h,mu)

%based on Example code 9.1

c1=1e-5;c2=10; %two initial guesses

tol=1e-6; %tolerance of c

err=inf;
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while err>tol

[y1,u1]=ode45(@der,[0,h],[0],[],c1,mu);

[y2,u2]=ode45(@der,[0,h],[0],[],c2,mu);

[y3,u3]=ode45(@der,[0,h],[0],[],(c1+c2)/2,mu);

e1=u1(length(u1))-U;

e2=u2(length(u2))-U;

e3=u3(length(u3))-U;

if sign(e3)==sign(e1)

c1=(c1+c2)/2;

elseif sign(e3)==sign(e2)

c2=(c1+c2)/2;

end

err=abs(c1-c2);

end

plot(u3,y3)

ylabel(’height (y) m’)

xlabel(’velocity (u) m/s’)

function uPrime=der(y,u,c,mu)

uPrime=c/mu;

end

y=y3;u=u3;c=c1

end

Another way to calculate c is Newton’s method. We can estimate the derivative
dut/dc by

dut
dc

∣∣∣∣
c

≈ ut(c+ δ)− ut(c)
δ

.

Adapted code with Newton’s method:

function [y,u,c] = CoutteNewtonianFluid3(U,h,mu)

%based on Example code 9.1 and 9.2

c=150; %an initial guess

delta=1e-8; %a small change in c

tol=1e-6; %tolerance of u(h)

err=inf;

while err>tol

[y1,u1]=ode45(@der,[0,h],[0],[],c,mu);

[y2,u2]=ode45(@der,[0,h],[0],[],c+delta,mu);

U1=u1(length(u1));

U2=u2(length(u2));

err=min(err,abs(U-U1));

dudc=(U2-U1)/delta; %estimated derivative

c=c-(U1-U)/dudc;

end

plot(u1,y1)

ylabel(’height (y) m’)
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xlabel(’velocity (u) m/s’)

function uPrime=der(y,u,c,mu)

uPrime=c/mu;

end

y=y1;u=u1;

end

Following commands

[yw1,uw1,cw1] = CoutteNewtonianFluid2(0.3,0.05,8.90e-4)

[yw2,uw2,cw2] = CoutteNewtonianFluid2(0.3,0.05,8.90e-4)

[ym1,um1,cm1] = CoutteNewtonianFluid3(0.3,0.05,8.90e-4)

[ym2,um2,cm2] = CoutteNewtonianFluid3(0.3,0.05,8.90e-4)

allow us to see the numerical results. The plots are same as shown in Fig.2. The
calculated constants are cw1 = 0.005340000000000, cw2 = 0.005339842005968,

cm1 = 0.009000000000000, cm2 = 0.008999563535452 which are good enough
approximations compared to actual c for water and mercury (cw = 5.34× 10−3

and cm = 9.00× 10−3).

3 Non-Newtonian fluid

A non-Newtonian fluid is a fluid that does not follow Newton’s law of viscosity.
Different non-Newtonian fluids have different relationship among shear stress,
shear rate, and time. For example, a thixotropic fluid, whose viscosity reduces
as increases, has a shear stress of

τ =

(
1

(u+ 1)et

)
du

dy
kg/m · s2. (5)

From Eq.1, we have

dτ

dy
=

d

dy

[(
1

(u+ 1)et

)
du

dy

]
= 0,

therefore
du

dy
= c(u+ 1)et. (6)

Since du/dy now depends on time, we need to calculate c for each t to meet the
boundary conditions. We can still use Newton’s method to find c. The code to
solve Eq.6 and in addition to show the relation of τ/(du/dy) and y can be:

function CoutteNonNewtonianFluid(U,h,t)

close all

clc

%based on Example code 9.2

c=150; %an initial guess of c

delta=1e-8; %a small change in c
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tol=1e-3; %tolerance of u(h)

L=[];

for i=1:length(t)

err=inf;

while err>tol

[y1,u1]=ode45(@der,[0,h],[0],[],c,t(i));

[y2,u2]=ode45(@der,[0,h],[0],[],c+delta,t(i));

U1=u1(length(u1));

U2=u2(length(u2));

err=min(err,abs(U-U1));

dudc=(U2-U1)/delta; %estimated derivative

c=c-(U1-U)/dudc;

end

figure(1),plot(u1,y1)

hold on

L=[L,{[’t=’ num2str(t(i))]}];

for k=1:length(u1)

taududy(k)=1/((u1(k)+1)*exp(t(i)));

end

figure(2),plot(taududy,y1)

hold on

end

figure(1),ylabel(’height (y) m’),xlabel(’velocity (u)

m/s’),legend(L,’Location’,’southeast’)

figure(2),ylabel(’height (y)

m’),xlabel(’\tau/(du/dy)’),legend(L,’Location’,’northeast’)

function uPrime=der(y,u,c,t)

uPrime=c*(u+1)*exp(t);

end

figure(1),set(gca,’FontSize’,18)

figure(2),,set(gca,’FontSize’,18)

end

Suppose h = 0.1m, following commands gives graphs of u(y) for different values
of t and U :

CoutteNonNewtonianFluid(0.5,0.1,[0.5,1,1.5,2])

CoutteNonNewtonianFluid(1,0.1,[0.5,1,1.5,2])

CoutteNonNewtonianFluid(1.5,0.1,[0.5,1,1.5,2])

CoutteNonNewtonianFluid(2,0.1,[0.5,1,1.5,2])

and the result is shown in Fig.3 and Fig.4. In Fig.3, curves are almost on top of
each other. I suppose that is because (du/dy) ∝ et, and the interval 0 < t < 2
is just not long enough. In Fig.4, it is clear that as t increases, there is less
variation in τ/(du/dy), which means the fluid behave more Newtonian.
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(a) U=0.5 (b) U=1.0

(c) U=1.5 (d) U=2.0

Figure 3: The solution to Eq.6 with h = 0.1m

(a) U=0.5 (b) U=1.0

(c) U=1.5 (d) U=2.0

Figure 4: τ/(du/dy) versus y
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4 Laminar flow

Laminar flow occurs when a fluid flows in parallel layers, with no disruption
between the layers. When a fluid moving down an incline due to gravity, its
shear stress satisfies

τ = γ(h− y)sin(θ) kg/m · s2, (7)

where γ is the specific weight of the fluid and θ is the inclination angle. As with
a Coutte flow, h is the thickness of the fluid, y is the perpendicular distance
from the bottom surface, u is the velocity of the fluid at y. We assume u(0) = 0.

4.1 Laminar flow of a Newtonian fluid

From the proportionality of shear stress and shear rate of a Newtonian fluid
(Eq.2) and Eq.7

du

dy
=
γ(h− y)sin(θ)

µ
. (8)

Based on this relation, we can have following code to help us analyze the laminar
flow of a Newtonian fluid

function Laminarflow1(h,mu,gamma,theta)

close all

clc

figure(’DefaultAxesFontSize’,18)

hold on

L=[];

for i=1:length(theta)

[y,u]=ode45(@der,[0,h],[0],[],mu,h,gamma,theta(i));

plot(u,y)

ylabel(’height (y) m’)

xlabel(’velocity (u) m/s’)

L=[L,{[’\theta=’ num2str(theta(i))]}];

end

legend(L,’Location’,’southeast’)

function uPrime=der(y,u,mu,h,gamma,theta)

uPrime=gamma*(h-y)*sin(theta)/mu;

end

end

SAE weight oil, which is Newtonian, and has γ = 8630 kg/m2 · s2 and µ =
0.5 kg/m · s. If h = 0.05m, following command solves Eq.8 and the result is
shown in Fig.5.

Laminarflow1(0.05,0.5,8630,[0,pi/24,pi/12,pi/8,pi/6])

Explicit solution of Eq.8 with boundary condition u(0) = 0 is

u(y) =
γsin(θ)(hy − y2

2 )

µ
.
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The quadratic relationship between u(y) and y gives parabola shaped curves as
shown in Fig.5.

Figure 5: The solution to Eq.8 with h = 0.05m

4.2 Laminar flow of a thixotropic fluid

As mentioned before, a thixotropic fluid’s viscosity reduces as time increases.
From shear stress of a thixotropic fluid (Eq.5) and Eq.7

du

dy
= γ(h− y)sin(θ)(u+ 1)et. (9)

To analyze how time and angle of inclination affect behavior of a thixotropic
fluid, we can use following code

function Laminarflow2(h,t,gamma,theta)

close all

clc

for j=1:length(theta)

L=[];

for i=1:length(t)

[y,u]=ode45(@der,[0,h],[0],[],t(i),gamma,h,theta(j));

figure(j),plot(u,y)

hold on

L=[L,{[’t=’ num2str(t(i))]}];

end

figure(j),title([’\theta=’ num2str(theta(j)) ’rad’]),

ylabel(’height (y) m’),xlabel(’velocity (u) m/s’),

legend(L,’Location’,’southeast’),set(gca,’FontSize’,18)

end

function uPrime=der(y,u,t,gamma,h,theta)

uPrime=gamma*(h-y)*sin(theta)*(u+1)*exp(t);

end

end
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Suppose h = 0.05m and γ = 9220 kg/m2 · s2, we can use command below to
solve Eq.9, and graph u(y) as θ varies over the interval [5◦, 10◦] and as time
varies over (0, 0.1]. The result is shown in Fig.6.

Laminarflow(0.05,[0.025,0.05,0.075,0.1],9220,

[5*(5*pi/180)/4,3*(5*pi/180)/2,7*(5*pi/180)/4,2*(5*pi/180)])

The relationship between u(y) and y is not as simple as that of Newtonian fluid
since for a thixotropic fluid, we have a nonlinear differntial equation.

(a) θ = 6.25◦ (b) θ = 7.50◦

(c) θ = 8.75◦ (d) θ = 10.00◦

Figure 6: The solution to Eq.9

4.3 Laminar flow of a rheopectic fluid

Unlike a thixotropic fluid, a rheopectic fluid has its viscosity increasing with
time. Suppose a rheopectic fluid has shear stress

τ =
(

15− u

4000

)
+

t

40(t+ 1)

du

dy
, (10)

Combining Eq.7 and Eq.10 gives

du

dy
=

[γ(h− y)sin(θ)− (15− u/4000)]t

40(t+ 1)
. (11)

Modify the ”function uPrime” part of the previous MATLAB code that solves
Eq.9, and we can use that to solve for Eq.11.
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function uPrime=der(y,u,t,gamma,h,theta)

%uPrime=gamma*(h-y)*sin(theta)*(u+1)*exp(t);

uPrime=(gamma*(h-y)*sin(theta)-(15-u/4000))*t/(40*(t+1));

end

Following command plots u(y) for some angles between 5◦ < θ < 6◦ and as time
varies between 10 and 11 seconds for a rheopectic fluid with γ = 7850 kg/m2 ·s2
and thickness h = 0.05m, and the result is shown in Fig.7. For each θ, u(y)
at different time are close to each other as shown in Fig.7. This is due to the
nature of the thixotropic fluid, as its viscosity increases with time. From another
perspective, as t increases, t/(t+1) part in Eq.10 approaches to 1, so u(y) would
get closer to the solution of du/dy = [γ(h − y)sin(θ) − (15 − u/4000)]/40 as t
increases.

(a) θ = 5.25◦ (b) θ = 5.50◦

(c) θ = 5.75◦ (d) θ = 6.00◦

Figure 7: The solution to Eq.9
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