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1 Introduction

Differential equations are used extensively in engineering, mathematics, and science to model
changes in system states. Two common methods used to solve partial differential equations
are finite element and finite difference methods. In this report, we use finite difference
methods for solving the heat and wave equations. The heat equation was used to model the
heat of a 2D plate with constant temperature and constant heat flux boundary conditions.
The wave equation was used to model the vibrations of a string and drum head. The heat
equation simulations were written in MATLAB, and a C/C++ extension of MATLAB was
used for the bulk of the computation in order to reduce the computation time for graphics
generation.

2 Modeling

2.1 Heat Equation

The heat equation describes how heat flows through a medium. Let u(x, y, t) be the tem-
perature at position (x, y) at time t. Consider a differential element centered at (x, y) with
area ∆x∆y, where ∆x is the width and ∆y is the depth. Suppose the area is sufficiently
small such that we can ignore the temperature variance within the element. Then, the total
heat inside an element at time t can be expressed as

u(x, y, t)∆x∆y.

Let Fx(x, y, t) be the flow rate per unit time per unit length along the positive x-axis, and
Fy(x, y, t) be the flow rate per unit time per unit length along the positive y-axis. Conser-
vation of energy implies that the heat changes inside a differential element is approximately
the total heat flow through its boundary, which gives

∂ (u∆x∆y)

∂t
(x, y, t) ≈ ∆yFx

(
x− ∆x

2
, y, t

)
−∆yFx

(
x+

∆x

2
, y, t

)
+ ∆xFy

(
x, y − ∆y

2
, t

)
−∆xFy

(
x, y +

∆y

2
, t

)
.

(2.1)
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Dividing Equation (2.1) by ∆x∆y, and taking the limit as ∆x→ 0 and ∆y → 0 gives

∂u

∂t
+
∂Fx

∂x
+
∂Fy

∂y
= 0. (2.2)

Let F = 〈Fx,Fy〉 and ∇ =
〈
∂
∂x
, ∂
∂y

〉
, which is the two-dimensional differential operator.

Equation (2.2) is now equivalent to

∂u

∂t
+∇ · F = 0. (2.3)

The law of heat conduction, also known as Fourier’s law, states that the rate of heat transfer
through a material is proportional to the negative gradient of temperature. Fourier’s law in
differential form is

F = −α∇u, (2.4)

which gives

∂u

∂t
− α (∇ · ∇u) = 0

by substituting Equation (2.4) into Equation (2.3). The coefficient α is a material property
represented as

α =
κ

cρ
,

where ρ, c, and κ represent the density, heat capacity, and thermal conductivity, respectively.
We need to specify an initial condition and boundary conditions to guarantee a unique
solution, where a general initial condition is described as

u(x, y, 0) = f(x, y).

There are three main types of boundary conditions Dirichlet, Neumann, and Robin. To
describe a fixed temperature at the boundary, we have a Dirichlet boundary condition,
which is generally represented as

u(x, y, t) = g(x, y, t)

such that for all x, y ∈ ∂Ω and t ≥ 0. To describe the flux through the boundary we have a
Neumann boundary condition

F(x, y, t) · n(x, y) = −α (∇u(x, y, t) · n(x, y))

such that for all x, y ∈ ∂Ω and t ≥ 0, where n(x, y) is the unit normal vector at (x, y) for
region Ω.
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2.1.1 Solving Heat Equation using Finite Differences

We use a forward difference scheme to approximate the first order derivative

∂u

∂t
(x, y, t) ≈ u(x, y, t+ ∆t)− u(x, y, t)

∆t
. (2.5)

Central difference schemes are used to approximate the second order derivatives

∂2u

∂2x
(x, y, t) ≈ u(x+ ∆x, y, t)− 2u(x, y, t) + u(x−∆x, y, t)

∆x2
(2.6)

and

∂2u

∂2y
(x, y, t) ≈ u(x, y + ∆y, t)− 2u(x, y, t) + u(x, y −∆y, t)

∆y2
. (2.7)

We define evenly spaced nodes x1, x2, . . . , xm and y1, y2, . . . , yn over a region with length L
and width W , which satisfies

x1 = 0 with xi+1 = xi + ∆x

y1 = 0 with yj+1 = yj + ∆y

and

t0 = 0 with tk+1 = tk + ∆t

for all i ∈ {1, 2, . . . ,m} , j ∈ {1, 2, . . . , n} , and k ≥ 0. Defining u(xi, yj, tk) = ui,j,k and
combining Equations (2.5)-(2.7) gives

ui,j,k+1 = ui,j,k +

(
k∆t

cρ∆x2

)
(ui+1,j,k − 2ui,j,k + ui−1,j,k)

+

(
k∆t

cρ∆y2

)
(ui,j+1,k − 2ui,j,k + ui,j−1,k) .

(2.8)

We can approximate a new temperature of the element at a forward time step of ∆t if
the temperature of an element and its four neighbouring elements are known. However,
the neighboring elements at the boundary have a missing neighbor, which then shows the
necessity for a boundary condition. For a Dirichlet boundary condition, we can simply fix
the boundary elements. For a Neumann boundary condition, we use a difference scheme to
supply the missing neighbor at the boundary. Stability needed for the model is given by

∆t <
cρ∆x2∆y2

2k (∆x2 + ∆y2)
.

Using a two dimensional region as shown in Figure 1a, suppose we have the initial condi-
tion that has fixed temperature of 60◦C, the Dirichlet boundary condition u(x, y, t) = 80◦C
on the left and right boundaries, and the Neumann boundary condition ∂u

∂n
= s − 1 on the

hemispherical top and bottom as shown in Figure 1.
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(a) (b)

Figure 1: A two dimensional region.

The finite difference scheme describes the boundary conditions as

u1,j,k = um,j,k = 80

for 10 ≤ yj ≤ 15,

ui−1,j,k = ui+1,j,k + ∆x

 x− 5√
(x− 5)2 + (y − 5)2


ui,j−1,k = ui,j+1,k + ∆x

 x− 5√
(x− 5)2 + (y − 5)2


for y = 5−

√
10x− x2 and x ≤ 5,

ui+1,j,k = ui−1,j,k −∆x

(
x− 5√

(x− 5)2 + (y − 5)2

)

ui,j−1,k = ui,j+1,k + ∆x

(
x− 5√

(x− 5)2 + (y − 5)2

)
for y = 5−

√
10x− x2 and x > 5,

ui−1,j,k = ui+1,j,k + ∆x

(
x− 5√

(x− 5)2 + (y − 10)2

)

ui,j+1,k = ui,j−1,k −∆x

(
x− 5√

(x− 5)2 + (y − 10)2

)
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for y = 10−
√

10x− x2 and x ≤ 5,

ui+1,j,k = ui−1,j,k −∆x

(
x− 5√

(x− 5)2 + (y − 10)2

)

ui,j+1,k = ui,j−1,k −∆x

(
x− 5√

(x− 5)2 + (y − 10)2

)

for y = 10 −
√

10x− x2 and x > 5. Notice that some boundary conditions such as
y =

(
5−
√

10x− x2
)

may never be satisfied. When programming we used the MATLAB
command abs(Y - (5 + sqrt(-X.^2 + 10 * X))) < dy / 1.5 instead. Using the given
boundary condition above and Equation (2.8), we can estimate the temperature change
inside the region over time.

2.2 Wave Equation

The wave equation is the other well known partial differential equation, which is

∂2u

∂t2
= α (∇ · ∇u) . (2.9)

The α in Equation (2.9) is the speed of the wave. The wave equation is widely used for
varying applications such as modeling a vibrating string and electromagnetic waves. Our
first wave equation used is

∂2u

∂t2
=
H

ρ

∂2u

∂x2
− κ∂u

∂t
, (2.10)

which is almost equivalent to Equation (2.9). The difference is that Equation (2.10) has a
damping term scaled by κ. The H is the common value to force equality in the derivation and
ρ is the linear density of the wire at position x. These two values, H and ρ, are equivalent
to the scalar α in Equation (2.9). The initial conditions for this model are

u(x, 0) = 0 and
∂u

∂t
(x, 0) = e−10(x−L

2 )
2

− e−10(L
2 )

2

with Dirichlet boundary conditions

u(0, t) = u(L, t) = 0

for all t. For this model we also have that the length of the region, L = 2.
The next equation we used is the two-dimensional wave equation

∂2u

∂t2
= 2 (∇ · ∇u) , (2.11)

where α = 2. The initial conditions for this model are

u(x, y, 0) =
||(x, y)||p

10
and

∂u

∂t
(x, y, 0) = 0
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with Dirichlet boundary conditions

u(x, y, t) = 0.1

for all x and y such that

||(x, y)||p = 1.

This was done for p-norms with p = 1, p = 2, p = 3, and p =∞.

2.2.1 Finite Difference Methods

Similarly to the heat equation we use difference equations to generate a numeric solution to
Equation (2.10). The damping term is approximated by a forward difference

κ∂u

∂t
≈ κ

(
ui,j+1 − ui,j

∆t

)
,

where κ is a damping parameter. The second order derivatives are approximated by second
order centered difference equations

∂2u

∂t2
≈ ui+1,j − 2ui,j + ui−1,j

∆t2

and

H

ρ

∂2u

∂x2
≈ H

ρ

(
ui+1,j − 2ui,j + ui−1,j

∆x2

)
.

The approximation of Equation (2.10) from the difference equations is

ui+1,j − 2ui,j + ui−1,j

∆t2
=
H

ρ

(
ui+1,j − 2ui,j + ui−1,j

∆x2

)
− κ

(
ui,j+1 − ui,j

∆t

)
,

which gives

ui,j+1 =

(
2− 2H∆t2

ρ∆x2
+ k∆t

)
ui,j + H∆t2

ρ∆x2
(ui+1,j + ui−1,j)− ui,j−1

1 + κ∆t
.

The first initial condition is approximated as

ui,0 = 0

for all i ∈ {1, 2, . . . ,m}, where 1 and n are the indices at x = 0 and x = L, respectively. The
second initial condition is approximated by a forward difference equation

ui,1 − ui,0
∆t

= e−10(xi−L
2 )

2

− e−10(L
2 )

2

,
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which gives

ui,1 = ui,0 + ∆t
(
e−10(xi−L

2 )
2

− e−10(L
2 )

2)
for all i ∈ {1, 2, . . . ,m}. The Dirichlet boundary conditions become

u1,j = un,j = 0

for all j ≥ 0. The parameter κ is determined by a bisection algorithm, which starts at values
a = 0 and b = 10. This algorithm performs bisection for elapsed times of [1, 1000] in steps
of 1.

The general wave equation in Equation (2.9) is done in a similar procedure, where second
derivatives are approximated by a second order centered difference equation. The wave
equation in two-dimensions is

∂2u

∂t2
= α

(
∂2u

∂t2
+
∂2u

∂t2

)
,

which becomes

ui,j,k+1 − 2ui,j,k + ui,j,k
∆t2

= α

(
ui+1,j,k − 2ui,j,k + ui−1,j,k

∆x2
+
ui,j+1,k − 2ui,j,k + ui,j−1,k

∆y2

)
in terms of difference equations. From here we simplify to get the next iteration in terms of
the current and previous values

ui,j,k+1 = 2

(
1− α∆t2

∆x2
− α∆t2

∆y2

)
ui,j,k

+ α∆t2
(
ui+1,j,k + ui−1,j,k

∆x2
+
ui,j+1,k + ui,j−1,k

∆y2

)
− ui,j,k−1,

but in our case α = 2 so we have

ui,j,k+1 = 2

(
1− 2∆t2

∆x2
− 2∆t2

∆y2

)
ui,j,k

+ 2∆t2
(
ui+1,j,k + ui−1,j,k

∆x2
+
ui,j+1,k + ui,j−1,k

∆y2

)
− ui,j,k−1.

The first initial condition is approximated as

ui,j,0 =

(
xpi + ypj

) 1
p

10

for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. The second initial condition is approximated
by a forward difference equation

ui,j,1 − ui,j,0
∆t

= 0,
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which gives

ui,j,1 = ui,j,0

for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. The Dirichlet boundary conditions are a little
more complicated now, but we have

ui,j,k = 0.1

for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n} such that(
xpi + ypj

) 1
p = 1.

Equivalently, we have

xpi + ypj = 1

because lim
p→∞

1p = 1.

3 Results

3.1 Heat Equation

First, the main geometry and boundary condition geometries were generated for the 2D
plate. We discretize the bounding box of the “arena” shaped plate and used the equations
of the upper and lower half circles to identify all of the discretized points contained by the
main geometry. All points within the geometry were set to a value of 1 as shown in Figure 2.

Figure 2: Discretization of the heated plate corresponding to the defined continuous geometry
on the left. All length units are in meters.
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The points on the edges of the geometry were then separated into the two boundary
condition types. The points on the left and right of the geometry were assigned the Dirichlet
condition. The curved top and bottom edges are more complicated to define. We used two
different techniques for defining the points that make up the curved boundaries. The first
technique used was taken from Chapter 11 [2] of the class notes, which identified edge points
using the inequality

|x2
i + y2

i − 1| < min {∆x,∆y}
1.5

.

This technique will be referred to as Method 1 or the proximity method.
The other technique involved looping through every row and column, and adding the

minimum and maximum index point that exists in the geometry to the boundary condition.
This method will make the thinnest boundary possible while guaranteeing there are no holes
along the edge. This technique will be referred to as Method 2 or the max/min method.
Figure 3 shows the boundary profiles created by both methods.

Figure 3: Boundary determination Methods 1 (left) and 2 (right) are shown visually. Method
2 included 12 additional points that were not included by Method 1.

Method 2 uses more points for the boundaries and ensures there are no holes along the
boundaries. So, Method 2 was used for the rest of the results. If the boundary is determined
to be too thin when compared to experimental results, Method 1 can easily be modified to
increase the thickness of the boundary.
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A simulation was run for 10 seconds for a variety of metals. The properties of the metals
used are shown in Table 1. The copper simulation is shown in Figure 4 at times of 0.5
seconds, 2 seconds, 5 seconds, and 10 seconds. A resolution of 0.25 cm was used for both
the x and y directions. The simulation of the other metals are in the Appendix.

Material Density(ρ) [kg/m3] Conductivity (k) [W/m−1K−1] Specific Heat (c) [J/kg−1K−1]
Copper, Pure 8954 386 380

Aluminum 6061 Temper-O 2710 180 1256
Carbon Steel 1.5% 7753 36 486

Gold, Pure 18900 318 130
Silver, Pure 10510 418 230

Table 1: Material properties of metals simulated.[1]

Figure 4: Simulation of the temperature gradient of a piece of copper over 10 seconds.

3.2 Wave Equation

The first result is for the smallest value of κ for which the one-dimensional wave equation
remains nonnegative. This result assumes the parameters are H = 0.1, ρ = 1, and L = 2.
Figure 5 shows the convergence of the κ value for Equation (2.10).
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(a) κ convergence as a function of time. (b) Bisection upper and lower bounds.

Figure 5: The κ convergence for nonnegative damping using Bisection.

The κ parameter converges to 1 as T →∞ as shown in Figure 5a. In Figure 5b, the bisection
bracket is shown for each iteration of the finite difference approximation throughout all values
of T . This convergence is because the solution could become negative at a larger duration
when a shorter duration could have just not gone long enough.

The next result is for the two-dimensional wave equation in Eqution (2.9), where α = 2
as described in Section 2.2. Figures 6-9 show the solutions from the finite difference methods
with varying p-norm values.
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(a) Solution at t = 0 (b) Solution at t = 0.5

(c) Solution at t = 1 (d) Solution at t = 5

Figure 6: Wave equation over the 1-norm at various times.
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(a) Solution at t = 0 (b) Solution at t = 0.5

(c) Solution at t = 1 (d) Solution at t = 5

Figure 7: Wave equation over the 2-norm at various times.
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(a) Solution at t = 0 (b) Solution at t = 0.5

(c) Solution at t = 1 (d) Solution at t = 5

Figure 8: Wave equation over the 3-norm at various times.
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(a) Solution at t = 0 (b) Solution at t = 0.5

(c) Solution at t = 1 (d) Solution at t = 5

Figure 9: Wave equation over the ∞-norm at various times.

The solution at time, t = 0, shows the progression of the unit p-norm over the region.
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Appendix

Figure 10: Simulation of the temperature gradient of a piece of aluminum over 10 seconds.
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Figure 11: Simulation of the temperature gradient of a piece of steel over 10 seconds.
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Figure 12: Simulation of the temperature gradient of a piece of gold over 10 seconds.
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Figure 13: Simulation of the temperature gradient of a piece of silver over 10 seconds.
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