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1 Introduction

Magnetism is a phenomenon that has been studied ever since lodestones-
naturally magnetized pieces of magnetite were discovered. Since then, mag-
netism has become a commonly studied physical property, appearing in every-
thing from elementary school science fair projects to special relativity. One
specific property of magnetism, the Curie point, will be discussed in this report.

The Curie point is the temperature where a phase transition occurs in a
magnet, causing it to lose magnetic attraction. This is possible to predict using
an Ising model, and helps show the behaviour of physical models.

2 Method

The Ising model is a model developed to characterize ferromagnetism in
metals. We use this model in its two-dimensional form to describe the interac-
tions between neighboring atoms. The simplest form of the 2-D model creates
a square lattice of atoms and defines spins as only having two states, positive
or negative. The energy of the system can be described by

E(σ) = −H
∑
i

σi − J
∑

(i,j)∈A

σiσj , (2.1)

where A is the collection of nearest neighbors. H is assumed to be 0 because
the analysis is done with no external field. J is a material property constant
that is positive for ferromagnetic materials and negative for anti-ferromagnetic
materials. J is set equal to one in our model to study ferromagnetic behavior.
This simplifies the energy model to

E(σ) = −
∑

(i,j)∈A

σiσj . (2.2)

The σ matrix has a periodic boundary condition which adds a level of com-
plexity to the way the collection matrix is formed. To counteract this, extra
rows and columns are added to all sides that mirror the boundary conditions
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so that finding the collection points near the edges of the original σ matrix is
trivial.

After the energy is found from the collection matrix using equation 2.2, the
value is halved due to the collection matrix double counting points.

Atom’s states are flipped to simulate lattice structure’s tendency to approach
a lower energy state Suppose σk is the current state, and σ̂ is the state after the
flip. The new state is accepted according the probability

P (σk, σ̂, T ) =

{
1, if E(σ̂) < E(σk)

e
E(σk)−E(σ̂)

T , if E(σ̂) ≥ E(σk).
(2.3)

If P (σk, σ̂, T ) ≥ y, where y is a sample of Y ∼ U(0, 1), then the new state σ̂
is accepted. To compare σk and σ̂, we do not need to recalculate the energy of
the whole lattice, but instead only have to focus on the changed atom σk

i and
its nearest neighbors σk

i1, σk
i2, σk

i3, and σk
i4,

E(σk)− E(σ̂) =(−σk
i + σ̂)(σk

i1 + σk
i2 + σk

i3 + σk
i4)

=− 2σk
i (σk

i1 + σk
i2 + σk

i3 + σk
i4). (2.4)

The state σ can be used to find other physical quantities than the energy
state.

Magnetization M(σ) = η
∑
i

σi, where η is a scalar, (2.5)

Heat Capacity CT =

〈
E2

T

〉
− 〈ET 〉2

kT 2
, (2.6)

Susceptibility χ =

〈
M2

T

〉
− 〈MT 〉2

kT
. (2.7)

〈ET 〉 or 〈MT 〉 are sample average of E or M at a specific temperature. (
〈
E2

T

〉
−

〈ET 〉2) or (
〈
M2

T

〉
− 〈MT 〉2) are essentially the variance of E or M .

3 Results

Figures 1a and 1b show the configuration of spins, σ, changes over iterations
at different temperature. In order to obtain a better sample of the data, early
iterations are thrown out to ensure that the data is taken closer to equilibrium.
This gives time for the random flipping to more closely approach its smallest
energy value and its highest entropy value.
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(a) T = 2.

(b) T = 4.

Figure 1: Simulation of a 30 by 30 lattice at different temperatures.
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Figure 2 shows the results of a simulation with a 30 by 30 lattice. The
temperature ranges from T = 1 to T = 4 with step size 0.03. From this
simulation, the Curie temperature is somewhere between T = 2.2 to T = 2.3.
At about T = 2.2, the energy per atom increases at its maximum rate. The
peak value of heat capacity per atom and susceptibility per atom also occurs
near T = 2.2. After T = 2.3 there is no net magnetization. This is proof of
a Curie point, and shows the behaviour of different physical properties of the
model around this temperature.

Figure 2: Simulated result for a 30 by 30 lattice.

4 Conclusion

While the Ising model is good at showing the behaviour of 2-Dimensional
and 1-Dimensional magnetism properties as a function of temperature, a 3D
model is intractable. This means that while our data shows how a magnet should
theoretically interact with its surroundings through its energy storage and its
magnetism, these can not be used to predict the real behaviour of magnets.
Because of this, our model only exists of a proof of concept for a Curie point.

5 Future Work

The model currently only evaluates all properties in two dimensions and
with a square geometry. Real world materials are not perfectly square nor do
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they exist in only two dimensions. In order for the model to be more realistic it
should be able to evaluate for different geometries as well as in three dimensions.
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