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1. Introduction 

In 1909, Ernest Rutherford performed his most famous work, the gold foil experiment, in which, an alpha 

particle beam is scattered when it strikes a thin metal foil. The result suggests that the structure of the 

atom should be a dense nucleus with electrons orbiting around it[8]. However, there is a problem with this 

model. In classical electromagnetism, any accelerating charge radiates energy. Therefore, an electron 

orbiting around a nucleus with circular motion experiences a centripetal acceleration, thus it should 

radiates energy and lose its kinetic energy, and would rapidly spiral into the nucleus within 1.6 ×

10−11𝑠[6]. However, in reality, most atoms are quite stable. This means a better model is needed to study 

atom. 

In 1913, in order to correct the classical model, Niels Bohr made a number of assumption[2]: 

1. Electrons can only be in certain, discrete circular orbits or stationary states, thereby having a 

discrete set of possible radii and energies. 

2. Electrons do not emit radiation while in one of these stationary states. 

3. An electron can gain or lose energy by jumping from one discrete orbital to another. 

This model is known as the Bohr model. With the above assumptions, there is no need to worry about 

collapse of atoms. In addition, the model matched experimental measuring of hydrogen spectral series, as 

well as spectral of hydrogen-like atoms (any atom ionized with only one electron left). Yet, Bohr model is 

still not perfect to explain some phenomena such as spectral details result from fine structure or hyperfine 

structure, Zeeman Effect, and etc. These issues were then resolved with further development of quantum 

mechanics.  

In 1925, Erwin Schrödinger derived the equation later named after himself, the Schrödinger Equation. 

The equation can be understanded mathematically as a linear partial differential equation that describes a 

physical system. The most general form of the equation is Time-dependent Schrödinger Equation 

(TDSE), which is able to describe how a system evolves with time. With TDSE, one is able to study the 

development of a quantum system, and thus, give exact analytical information of the non-relativistic 

hydrogen atom. 

 

 

2. Derivation of the PDE 

In this paper, for simplicity, the time-independent form of Schrödinger Equation is considered, and in 

general it can be expressed as: 

 �̂�|Ψ⟩ = 𝐸|Ψ⟩ (1) 

where �̂� is the Hamiltonian operator, which ‘extract’ the information about energy from the system, and 

its exact form is depend on which system is studied; |Ψ⟩ is the state vector, or the wave equation, 



representing the system being studied; and  E is a constant equal to the total energy of the system. The 

above equation can also be understand as an operator and an eigenstate. 

From the relation of momentum and kinetic energy, the Hamiltonian operator can be written in the form: 

 �̂� =
𝐩2

2𝜇
+ 𝑉(𝑟) (2) 

where V(r) is the potential energy, 𝜇 is the reduced mass, and p is the momentum operator defined as: 

 p̂ = −𝑖ℏ∇ (3) 

where ℏ is the reduced Planck constant, and ∇ is the gradient operator. 

Then the Hamiltonian operator becomes: 

 �̂� = −
ℏ2

2𝜇
∇2 + 𝑉(𝑟) (4) 

Since hydrogen atom is spherically symmetric, work in spherically coordinates should be a relatively 

easier way to approach the hydrogen wave equation. The Laplacian operator in spherical coordinates is: 

 ∇2=
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2 sin(𝜃)

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑟2 sin2(𝜃)

𝜕2

𝜕𝜙2
 (5) 

Substitute the Hamiltonian operator into the time-independent Schrödinger Equation: 

 
−
ℏ2

2𝜇
[
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2 sin(𝜃)

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕2

𝜕𝜙2
]𝜓(𝑟, 𝜃, 𝜙) + 𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜙)

= 𝐸𝜓(𝑟, 𝜃, 𝜙) 

(6) 

In quantum mechanics, there is an L2 operator, which is used to ‘extract’ squared L2 norm of angular 

momentum vector from a system, and L2 in spherical coordinates is: 

 𝐿2̂ = −ℏ2 [
1

sinθ

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

sin2 θ

𝜕2

𝜕𝜙2
] (7) 

(The notation is kind of confusing, but L2 operator has not much to do with L2 norm, in physics angular 

momentum is commonly represent by letter L as in the L2 operator). 

With L2 operator, the Schrödinger Equation can be written in a more compact form: 

 −
ℏ2

2𝜇
[
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) −

1

ℏ2𝑟2
𝑳2 ] 𝜓(𝑟, 𝜃, 𝜙) + 𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜙) = 𝐸𝜓(𝑟, 𝜃, 𝜙) (8) 

 

 

3. Solution of hydrogen wave equation 

Now we have the partial differential equation of hydrogen wave equation, and we are about to 

solve it. A popular way to handle this equation is to use separation of variables first, and then to 

solve each ordinary differential equation. 

The following few sections of solving hydrogen wave equation are based on works in 

Introduction to Quantum Mechanics by David Griffiths, Quantum Mechanics by David McIntyre 

et al, and Quantum Mechanics by Claude Cohen-Tannoudji et al. 



3.1 Separation of variables 

Assuming the solution of 𝜓(𝑟, 𝜃, 𝜙) can be written as product of functions that depends on only one 

variable. First, try the separate the radial solution 𝑅(𝑟) that only depend on r from 𝜓(𝑟, 𝜃, 𝜙): 

 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃,𝜙) (9) 

The PED in Eq. (8) then becomes: 

 −
ℏ2

2𝜇
[
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) −

1

ℏ2𝑟2
𝑅(𝑳2𝑌)] + 𝑉(𝑟)𝑅𝑌 = 𝐸𝑅𝑌 (10) 

Divide both sides by RY: 

 −
ℏ2

2𝜇
[
1

𝑅

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) −

1

𝑌

1

ℏ2𝑟2
(𝑳2𝑌)] + 𝑉(𝑟) = 𝐸 (11) 

Place all terms with r on one side, and terms with 𝜃 and 𝜙 on the other side: 

 
1

𝑅

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) −

2𝜇

ℏ2
(𝐸 − 𝑉(𝑟))𝑟2 =

1

𝑌

1

ℏ2
(𝑳2𝑌) (12) 

Since one side of Eq. (12) depends only on r and the other side depends on 𝜃 and 𝜙, this equation should 

equal to a constant, A. Therefore, we have radial equation and angular equation as follow: 

 
1

𝑅

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) −

2𝜇

ℏ2
(𝐸 − 𝑉(𝑟))𝑟2 = 𝐴 (13) 

 
1

𝑌

1

ℏ2
(𝑳2𝑌) = 𝐴 (14) 

Rearrange Eq. (14) gives: 

 𝑳2𝑌(𝜃, 𝜙) = 𝐴ℏ2𝑌(𝜃, 𝜙) (15) 

In quantum mechanics, the 𝑳2 operator acting on an eigenstate has eigenvalue 𝑙(𝑙 + 1), where l is the 

angular quantum number, so in principle, 𝐴 = 𝑙(𝑙 + 1). 

At this point, we have successfully separate radial equation form the PDE. Now, we can also try to 

separate 𝜃 and 𝜙 dependences from angular equation. Again, assuming 𝑌(𝜃, 𝜙) can be expressed as 

product of functions that depend on one variable only: 

 𝑌(𝜃, 𝜙) = Θ(𝜃)Φ(𝜙) (16) 

Plugging Eq. (16) into the angular equation, Eq. (15): 

 𝑳2ΘΦ = 𝑙(𝑙 + 1)ℏ2ΘΦ (17) 

Substitute in the L2, and rearrange slightly: 

 {
1

Θ
[𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕Θ

𝜕𝜃
)] + 𝑙(𝑙 + 𝑙) sin2 𝜃} = −

1

Φ

𝜕2Φ

𝜕𝜙2
 (18) 

Since one side of Eq. (13) depends only on 𝜃 and the other side depends on 𝜙, this equation should also 

equal to a constant, B. Thus, the Theta equation and Phi equation are: 

 
1

Θ
[𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕Θ

𝜕𝜃
)] + 𝑙(𝑙 + 𝑙) sin2 𝜃 = 𝐵 (19) 

 
1

Φ

𝜕2Φ

𝜕𝜙2
= −𝐵 (20) 

The PDE is now separated into three ODE: 



−
ℏ2

2𝜇
[
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) −

1

ℏ2𝑟2
𝑳2 ] 𝜓(𝑟, 𝜃, 𝜙) + 𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜙) = 𝐸𝜓(𝑟, 𝜃, 𝜙) 

↓ 

{
  
 

  
 
1

𝑅

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) −

2𝜇

ℏ2
(𝐸 − 𝑉(𝑟))𝑟2 = 𝑙(𝑙 + 1)

1

Θ
[𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕Θ

𝜕𝜃
)] + 𝑙(𝑙 + 𝑙) sin2 𝜃 = 𝐵

1

Φ

𝜕2Φ

𝜕𝜙2
= −𝐵

 

The next step is to solve these ODE, and combine the solutions of each ODE to give the wave equation of 

hydrogen. 

 

 

3.2 Azimuthal Solution 

Start from the easiest ODE. General solution for differential equation Eq. (20) is: 

 Φ(𝜙) = 𝑁𝑒±𝑖√𝐵𝜙 (21) 

where N is the normalization constant (since in quantum mechanics, wave equation is related to 

probability, and inner product of wave equations thus should not exceed 1). To ensure the function is 

continuous, we also have the restriction Φ(𝜙) = Φ(𝜙 + 2𝜋). This restriction requires √𝐵 to be an 

integer: 

√𝐵 = 𝑚 = 0,±1,±2… 

Like l, m also have some physical meaning, in quantum mechanics, m is the orbital magnetic quantum 

number. 

Therefore, eigenfunctions for the ODE Eq. (20) are: 

 Φm(𝜙) = 𝑁𝑒
𝑖𝑚𝜙 (22) 

Inner product of a wave function with itself over would space should equal to 1, since the total probability 

equals 1. The inner product in quantum mechanics is defined as the integration of a wave equation and 

complex conjugate of another wave equation over certain region. Therefore, we are able to get the 

normalization constant N: 

 1 = ∫ Φm
∗ (𝜙)Φm(𝜙)𝑑𝜙

2𝜋

0

= ∫ 𝑁∗𝑒−𝑖𝑚𝜙𝑁𝑒𝑖𝑚𝜙𝑑𝜙 = 2𝜋|𝑁|2
2𝜋

0

 (23) 

One valid normalization constant can be: 

 𝑁 =
1

√2𝜋
 (24) 

The solutions are thus: 

 Φm(𝜙) =
1

√2𝜋
𝑒𝑖𝑚𝜙 (22) 



3.3 Polar Solution 

During solving phi solution, we found that √𝐵 = 𝑚, so the differential equation Eq. (19) can be rewritten 

as: 

 [𝑠𝑖𝑛𝜃
𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕Θ

𝜕𝜃
)] + 𝑙(𝑙 + 𝑙) sin2 𝜃Θ −𝑚2Θ = 0 (23) 

Rearrange: 

 [
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) −

𝑚2

sin2 𝜃
]Θ = −𝑙(𝑙 + 𝑙)Θ (24) 

One method used by many references to deal with the above differential equation is changing variable. By 

switch from spherical coordinates back to Cartesian coordinates, we have 𝑧 = 𝑐𝑜𝑠𝜃 inside a unit sphere 

(since we have not consider the radial solution yet, so the radius does not matter). From trigonometric 

identity sin2 𝜃 + cos2 𝜃 = 1, we also have 𝑠𝑖𝑛𝜃 = √1 − 𝑧2. Now, use the chain rule: 

 
𝑑

𝑑𝜃
=
𝑑𝑧

𝑑𝜃

𝑑

𝑑𝑧
= −𝑠𝑖𝑛𝜃

𝑑

𝑑𝑧
= −√1 − 𝑧2

𝑑

𝑑𝑧
 (25) 

Multiply both side of the above equation by 𝑠𝑖𝑛𝜃 = √1 − 𝑧2: 

 𝑠𝑖𝑛𝜃
𝑑

𝑑𝜃
= −(1 − 𝑧2)

𝑑

𝑑𝑧
 (26) 

Then we are able to replace all 𝜃 in Eq. (24) by z: 

 

[
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) −

𝑚2

sin2 𝜃
]Θ(𝜃) + 𝑙(𝑙 + 𝑙)Θ(𝜃) 

= [
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(−(1 − 𝑧2)

𝑑

𝑑𝑧
) −

𝑚2

1 − 𝑧2
] Θ(𝜃) + 𝑙(𝑙 + 𝑙)Θ(𝜃) 

= [
𝑑

𝑑𝑧
(−(1 − 𝑧2)

𝑑

𝑑𝑧
) −

𝑚2

1 − 𝑧2
] 𝑃(𝑧) + 𝑙(𝑙 + 𝑙)𝑃(𝑧)           

= [(1 − 𝑧2)
𝑑2

𝑑𝑧2
− 2𝑧

𝑑

𝑑𝑧
+ 𝑙(𝑙 + 1)  −

𝑚2

1 − 𝑧2
]𝑃(𝑧) = 0    

 

 

 

 

 

 

 

(27) 

The differential equation after changing variable is a standard form of the associated Legendre equation. 

According to Method of Mathematical Physics by David Hilbert, the equation has nontrivial and 

nonsingular solution on [-1, 1] only if l and m are integers. The solutions to this differential equation are 

denoted 𝑃𝑙
𝑚(𝑧), which is defined as derivatives of ordinary Legendre polynomials: 

 𝑃𝑙
𝑚(𝑧) = (−1)𝑚(1 − 𝑧)

𝑚
2
𝑑𝑚

𝑑𝑧𝑚
(𝑃𝑙(𝑧)) (28) 

The ordinary Legendre polynomials has form: 

 𝑃𝑙(𝑧) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑧𝑙
(𝑧2 − 1)𝑙 (29) 

Plugging the ordinary Legendre polynomial into Eq. (28) and simplify: 

 𝑃𝑙
𝑚(𝑧) = (−1)𝑚

1

2𝑙𝑙!
(1 − 𝑧)

𝑚
2
𝑑𝑚+𝑙

𝑑𝑧𝑚+𝑙
(𝑧2 − 1)𝑙 (30) 

Again, since the equation is related to probability, a normalization factor is required to ensure its inner 

product with itself is 1. 



 ∫ 𝑃𝑙
𝑚(𝑧)𝑃𝑛

𝑚(𝑧)𝑑𝑧 =
2

2𝑙 + 1

(𝑙 + 𝑚)!

(1 −𝑚)!
𝛿𝑙𝑛

1

−1

 (31) 

Therefore the normalization factor is √
2𝑙+1

2

(𝑙−𝑚)!

(𝑙+𝑚)!
. Then switching back to spherical coordinate by 

replacing all z by 𝜃 gives the polar solution: 

 Θ𝑙
𝑚(𝜃) = √

2𝑙 + 1

2

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃) (32) 

with l and m are both integers. 

Also, the ordinary Legendre polynomial is a polynomial of order l, if m>l, the associated Legendre 

polynomial vanishes, so we have 𝑚 ∈ {−𝑙, −𝑙 + 1,… ,−1,0,1,… , 𝑙 − 1, 𝑙}.  

 

 

3.4 Spherical harmonics 

The combination of azimuthal solution Eq. (22) and polar solution Eq. (32) gives: 

 𝑌𝑙
𝑚(𝜃, 𝜙) = (−1)

𝑚+|𝑚|
2 √

2𝑙 + 1

4

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜙 (33) 

which solve the angular equation Eq. (14). Equation in the form of Eq. (33) is called the spherical 

harmonics. 

The spherical harmonics has several important properties: 

 Orthogonality 

 ∫ ∫ 𝑌𝑙1
𝑚1∗(𝜃, 𝜙)𝑌𝑙2

𝑚2(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 = 𝛿𝑙1𝑙2𝛿𝑚1𝑚2

𝜋

0

2𝜋

0

 (34) 

where 𝛿 is the Kronecker delta. 

The orthogonality of m comes from the complex exponential function part of azimuthal solution. 

The orthogonality of l comes from the Legendre equation. 

 

 Completeness 

The spherical harmonics are able to expand any sufficiently smooth function on a unit sphere: 

 𝜓(𝜃, 𝜙) =∑ ∑ 𝑐𝑙𝑚𝑌𝑙
𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=0

 (35) 

where clm are coefficients that can be found by projecting the function 𝜓(𝜃, 𝜙) onto each 

𝑌𝑙
𝑚(𝜃, 𝜙): 

 𝑐𝑙𝑚 = ∫ ∫ 𝑌𝑙
𝑚∗(𝜃, 𝜙)𝜓(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 (36) 

The idea is much like we can expand a continuous function with piecewise continuous derivative 

to a Fourier series in one dimension. 



3.5 Radial solution 
For radial equation: 

 
1

𝑅

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) −

2𝜇

ℏ2
(𝐸 − 𝑉(𝑟))𝑟2 = 𝑙(𝑙 + 1) (13) 

first we need to find out the potential energy V(r). Potential energy comes in two parts in hydrogen atom 

problem. Electromagnetic interaction between the electron and the nucleus contributes to one part, and 

another part is caused by the ‘circular motion’ of the electron around nucleus, which is called centrifugal 

barrier (the ‘circular motion’ is in quotation mark since the electron is not really in circular motion, it is 

just a classical way to interpret the behavior of an electron). The potential energy can be expressed as: 

 𝑉(𝑟) = −
𝑍𝑒2

4𝜋𝜖0𝑟
+
ℏ2𝑙(𝑙 + 1)

2𝜇𝑟2
 (37) 

where Ze is the nuclear charge (although hydrogen atom has nuclear charge e, the hydrogen atom wave 

equation in principle applied to all hydrogen-like atoms as mentioned in introduction. For example He+, 

the helium +1 ion, has nuclear charge 2e), 𝜖0 is permittivity of free space, ℏ is the reduced Planck 

constant, and 𝜇 is the reduced mass (in two body problem, in this case electron and nucleus, electron is 

not orbiting around nucleus, but center of mass of the system. So in the reference frame centered at 

nucleus, to be precise, reduced mass is used instead). 

In Bohr model, Niels Bohr already gives a good approximate radius of electron orbital radius, which is 

often refer to Bohr radius (and in fact, it is the most probable radius calculated using wave equation!): 

 𝑎0 =
4𝜋𝜖0ℏ

2

𝜇𝑒2
 (38) 

To make the radius more general to deal with case when nuclear charge is not e, we define a length scale 

parameter a as: 

 𝑎 =
4𝜋𝜖0ℏ

2

𝜇𝑍𝑒2
=
𝑎0
𝑍

 (39) 

Mathematicians usually ignoring constant when solving problems for simplicity as rescaling the wave 

equation from 𝑢𝑡𝑡 = 𝑐
2𝑢𝑥𝑥 to 𝑢𝑡𝑡 = 𝑢𝑥𝑥 and so on. Similarly, physicists like to dealing with 

dimensionless quantity for clarity. Therefore, we define a dimensionless radius to be: 

 𝜌 =
𝑟

𝑎
 (40) 

 

And characteristic energy scale which is also dimensionless: 

 
−𝛾2 =

𝐸

(
ℏ2

2𝜇𝑎2
)
 

(41) 

The radial equation becomes: 

 
𝑑2𝑅

𝑑𝜌2
+
2

𝜌

𝑑𝑅

𝑑𝜌
+ (−𝛾2 +

2

𝜌
−
𝑙(𝑙 + 1)

𝜌2
)𝑅 = 0 (42) 

 

To solve Eq. (41), one approach is to start with considering asymptotic solution. 

 For large 𝜌, inside parentheses of Eq. (41), term with 𝜌−1 and 𝜌−2 can be neglected, and the 

differential equation becomes: 



 
𝑑2𝑅

𝑑𝜌2
+
2

𝜌

𝑑𝑅

𝑑𝜌
− 𝛾2𝑅 = 0 (43) 

which has solution: 

 𝑅(𝜌)~𝑒−𝛾𝜌 (44) 

 For small 𝜌, inside parentheses,  𝜌−2 term dominates, Eq. (41) becomes: 

 
𝑑2𝑅

𝑑𝜌2
+
2

𝜌

𝑑𝑅

𝑑𝜌
−
𝑙(𝑙 + 1)

𝜌2
𝑅 = 0 (45) 

Suppose that the solution has the form 𝑅(𝜌) = 𝜌𝑞 for some constant q. Plugging 𝑅(𝜌) = 𝜌𝑞 into 

Eq. (41): 

 
𝑞(𝑞 − 1)𝜌𝑞−2 +

2

𝜌
𝑞𝜌𝑞−1 −

𝑙(𝑙 + 1)

𝜌2
𝜌𝑞 = 0 

𝑞(𝑞 + 1) = 𝑙(𝑙 + 1) 

 

 

 

(46) 

Therefore, q = l or q = -l -1. To keep the solution finite when 𝜌 small, q is can only be 1, thus the 

solution is: 

 𝑅(𝜌)~𝜌𝑙 (47) 

At this point, we have the approximate solution near the nucleus, and at the infinity. The actual solution 

should be the combination of Eq. (43), Eq. (46), and another term that describing the solution in between. 

Suppose that the actual solution is: 

 𝑅(𝜌) = 𝜌𝑙𝑒−𝛾𝜌𝐻(𝜌) (48) 

Plugging Eq. (47) back into the differential equation Eq. (41), and collect terms of 𝐻(𝜌) and its 

derivatives: 

 𝜌
𝑑2𝐻

𝑑𝜌2
+ 2(𝑙 + 1 − 𝛾𝜌)

𝑑𝐻

𝑑𝜌
+ 2(1 − 𝛾 − 𝛾𝑙)𝐻 = 0 (49) 

Assume 𝐻(𝜌) can be expand as a power series: 

 𝐻(𝜌) =∑𝑐𝑗𝜌
𝑗

∞

𝑗=0

 (50) 

Then it has derivatives: 

 𝐻′(𝜌) =∑𝑗𝑐𝑗𝜌
𝑗−1

∞

𝑗=1

=∑(𝑗 + 1)𝑐𝑗+1𝜌
𝑗

∞

𝑗=0

 (51) 

 𝐻′′(𝜌) =∑𝑗(𝑗 + 1)𝑐𝑗+1𝜌
𝑗−1

∞

𝑗=0

 (52) 

Substituting Eq. (50) and Eq. (51) into Eq. (48): 

 𝜌∑𝑗(𝑗 + 1)𝑐𝑗+1𝜌
𝑗−1

∞

𝑗=0

+ 2(𝑙 + 1 − 𝛾𝜌)∑(𝑗 + 1)𝑐𝑗+1𝜌
𝑗

∞

𝑗=0

+ 2(1 − 𝛾 − 𝛾𝑙)∑𝑐𝑗𝜌
𝑗 = 0

∞

𝑗=0

 (53) 

To ensure the summation is zero, we need the coefficient of each power of 𝜌 to be zero. Consider the 𝜌𝑗 
term: 

 𝑗(𝑗 + 1)𝑐𝑗+1 + 2(𝑙 + 1)(𝑗 + 1)𝑐𝑗+1 − 2𝛾𝑗𝑐𝑗 + 2(1 − 𝛾 − 𝛾𝑙)𝑐𝑗 = 0  



 𝑐𝑗+1 =
2𝛾(1 + 𝑗 + 𝑙) − 2

(𝑗 + 1)(𝑗 + 2𝑙 + 2)
𝑐𝑗 (54) 

The idea behind the above few step in fact is similar to how coefficient of Legendre polynomials is 

determined. We can use similar way to find an expression for polar solution as well. 

However, there is a problem of the coefficient we found. It does not guarantee the convergence of the 

series, the solution is then to terminate the series at certain point. This requires 𝑐𝑗𝑚𝑎𝑥 + 1 = 0, and 

therefore: 

 𝑐𝑗𝑚𝑎𝑥+1 =
2𝛾(1 + 𝑗𝑚𝑎𝑥 + 𝑙) − 2

(𝑗𝑚𝑎𝑥 + 1)(𝑗𝑚𝑎𝑥 + 2𝑙 + 2)
𝑐𝑗𝑚𝑎𝑥 = 0  

 
 

2𝛾(1 + 𝑗𝑚𝑎𝑥 + 𝑙) − 2 = 0 

 

(55) 

Since  j and l are both integers, (1 + 𝑗𝑚𝑎𝑥 + 𝑙) is also an integer, which we can denote as n. In quantum 

mechanics, n is the principle quantum number. By how n is defined, we can see 𝑛 ≥ 𝑙 + 1, so we have 𝑙 ∈

{0,1,2,… , 𝑛 − 1}. 

And the radial solution can now be safely written as: 

 

𝑅𝑛,𝑙 = 𝜌
𝑙𝑒−𝛾𝜌𝐻(𝜌) 

                     = (
𝑍𝑟

𝑎0
)
𝑙

𝑒
−
𝑍𝑟
𝑛𝑎0𝐻(

𝑍𝑟

𝑎0
) 

(56) 

The radial equation are usually expressed in terms of the associated Laguerre polynomials, which are 

defined as: 

 𝐿𝑞
𝑝(𝑥) =

𝑑𝑝

𝑑𝑥𝑝
𝐿𝑝(𝑥) (57) 

where 𝐿𝑝(𝑥) is the ordinary Laguerre polynomials, that are defined as: 

 𝐿𝑞(𝑥) = 𝑒
𝑥
𝑑𝑞

𝑑𝑥𝑞
(𝑥𝑞𝑒−𝑥) (58) 

Using above definition for associated Laguerre polynomials, radial solution are: 

 𝑅𝑛,𝑙(𝑟) = ((
2𝑧

𝑛𝑎0
)
3 (𝑏 − 𝑙 − 1)!

2𝑛((𝑛 + 𝑙)!)
3)

1
2

𝑒
−
𝑍𝑟
𝑛𝑎0 (

2𝑍𝑟

𝑛𝑎0
)
𝑙

𝐿𝑛+𝑙
2𝑙+1(

2𝑍𝑟

𝑛𝑎0
) (59) 

 

 

4. Hydrogen wave functions 

Finally, by combining the spherical harmonics, Eq. (33), and radial solution, Eq. (59), we can have the 

full wave function: 

 𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝑅𝑛𝑙(𝑟)𝑌𝑙
𝑚(𝜃, 𝜙) (60) 

Clearly, the partial differential equation, Eq. (8) is solved by the above equation, thus solution exists. 

Though the derivation of the wave function, we introduced three integer quantum number n, l, and m: 

𝑛 ∈ ℕ 

𝑙 ∈ {0,1,2,… , 𝑛} 



𝑚 ∈ {−𝑙, −𝑙 + 1,…0,… , 𝑙 − 1, 𝑙} 

Therefore, the solution to the differential equation is not unique. 

It is hard to see the stability of the solution, since we use time-independent form of Schrödinger Equation, 

and we cannot use energy method in the way we normally used in class. Yet, there are some conserved 

quantities can be found: 

 As we demand in Eq. (17), L2 operator acting on the spherical harmonics returns 𝑙(𝑙 + 1)ℏ2. 

Since L2 operator does not have any r dependence, acting it on the full wave function would still 

gives  𝑙(𝑙 + 1)ℏ2. 

 𝑳2𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝑙(𝑙 + 1)ℏ
2𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) (61) 

This means the squared L2 norm of angular momentum vector is constant for a wave equation 

with specified quantum number n, l, and m. 

 Since squared L2 norm of angular momentum vector is conserved, we are expecting projection of 

angular momentum vector in any direction is conserved. 

Angular momentum operator, L, in Cartesian coordinates are defined as: 

 𝑳 = �̂� × �̂� = (𝑦𝑝𝑧 − 𝑧𝑝𝑦, 𝑧𝑝𝑥 − 𝑥𝑝𝑧, 𝑥𝑝𝑦 − 𝑦𝑝𝑥) (62) 

with p̂ = −𝑖ℏ∇ as defined in Eq. (3). 

Switch to spherical coordinate, we have[1]: 

 

{
  
 

  
 𝐿�̂� = 𝑖ℏ(𝑠𝑖𝑛𝜙

𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑐𝑜𝑠𝜙

𝜕

𝜕𝜙
)

𝐿�̂� = 𝑖ℏ(−𝑐𝑜𝑠𝜙
𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑠𝑖𝑛𝜙

𝜕

𝜕𝜃
)

𝐿�̂� = −𝑖ℏ
𝜕

𝜕𝜙

 (63) 

The easiest one is z component. Since it only involves partial with respect to 𝜙, acting it on wave 

equation, only azimuthal solution matters, and it will return 𝑚ℏ. For other two components, it is 

hard to show results rigorously. However in reality, there is no one direction marked z, so we can 

use spherical symmetry to rotate the system, and the rest two component should behave just like z 

component. Thus we have: 

 𝐿�̂�𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝑚ℏ𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) (64) 

This means angular momentum is constant for a wave equation with specified quantum number n, 

l, and m. 

 We have conserved quantities related to l and m. We should expect there is a conserved quantity 

related to n as well, and there is one! 

By Eq. (55) and with definition 𝑛 = (1 + 𝑗𝑚𝑎𝑥 + 𝑙): 

 𝛾 =
1

𝑛
 (65) 

𝛾 is defined in Eq. (41), so we have the relation between n and energy. Solving Eq. (41) and Eq. 

(65) yields: 

 𝐸𝑛 = −
1

2𝑛2
(
𝑍𝑒2

4𝜋𝜖0
)

2
𝜇

ℏ2
  (66) 



This means, the energy operator, or the Hamiltonian operator, has eigenvalue −
1

2𝑛2
(
𝑍𝑒2

4𝜋𝜖0
)
2
𝜇

ℏ2
. 

 �̂�𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = (−
ℏ2

2𝜇
∇2 + 𝑉(𝑟))𝜓𝑛𝑙𝑚 = −

1

2𝑛2
(
𝑍𝑒2

4𝜋𝜖0
)

2
𝜇

ℏ2
𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) (67) 

This means energy is constant for a wave equation with specified quantum number n, l, and m. 

Energy levels of hydrogen atom, and hydrogen-like atoms can be determined using Eq. (67), and 

this also explain the spectrum of hydrogen-like atoms. 

 

 

5. Conclusion 
Quantum mechanics is an essential tool to deal with problems in microscopic world. Using Schrödinger 

Equation we can learn much about atoms. Yet, with all the discussion above, we are not even at the fine 

structure level of atom. To deal with fine structure or hyperfine structure level problem, we run out of 

tools for the exact solution. A method called perturbation theory is introduced to approximate, by starting 

from a relatively simpler but similar problem, then adding correction terms. However, when problem 

becomes more complicated, for example, the Helium atom, which is a three body problem involving two 

electrons and a nucleus, perturbation theory starts to fail. It seems like there is still a long way to go on 

the exploration and discovery. 
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