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Abstract— Game theory has wide implementation on many fields of study. With more recent 

development in quantum computation and quantum information, we are able to study games with rule 

of quantum mechanics. This paper consists two part: in first part, basic knowledge of game theory is 

briefly recalled, and prisoner’s dilemma is introduced; in second part, how quantum version game is 

differ from classical is discussed, and an analysis  quantum version of prisoner’s dilemma is 

presented. 
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1. Introduction 

Game theory is a well-studied subject that has been widely applied to social science and many other field. 

On the other hand, quantum computation and quantum communication, which is a more recently 

developed subject, make it possible to study games with rule of quantum mechanics. A new 

interdisciplinary subject, quantum game theory, is then established.  

Classical game theory is a study on strategic interaction between rational decision-makers. Modern game 

theory focuses on existence of mixed-strategy equilibriums in two-person zero-sum games, which is proof 

by John von Neumann[5]. In 1950, the well-known mathematical discussion of the prisoner's dilemma 

appeared, and around the same time, John Nash developed a criterion for mutual consistency of players' 

strategies[6][9]. 

With properties of quantum mechanics, for example, superposition and entanglement, quantum game 

theory would be far more complex compared with the classical version. 

 

 

2. Classical game theory 

Game theory can be defined as the study of mathematical models of strategic interaction between rational 

decision-makers[2]. Individuals involved in a game are interrelated, as one’s decision is affected by 

others’, and also one’s decision affect others’. Therefore, no one in the game is able to control the result 

completely, and no one is completely isolated from others. In addition, individuals in the game are 

rational decision-makers, which means they should make decisions that will maximize their expected 

payoff. Because of interdependency of players, a rational decision must be made based on anticipating 

other players’ action. 

In mathematics, most games usually have following three elements: 

1. Players: which can be represented as: 

𝑖 = 1, 2, … 



2. Strategies: each player has multiple strategies, and these strategies form a Strategic Space. For 

player i, if he has k pure strategies (a pure strategy determines the action of a player would make 

for any situation that the player could face, while a mixed strategy gives a probability distribution 

of pure strategy), then his or her Strategic Space can be represented as: 

𝑆𝑖 = {𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑘} 
Sometimes, Strategic Space can be continuous instead of discrete as well. 

3. Payoff: each player’s payoff is a function: 

$(𝑠), 𝑠 = {𝑠1, 𝑠2, … } 

where s is combination of all player’s strategies called Strategy Profile, and si is ith player’s 

strategy. 

* Some studies may also include elements such as: information, outcome, equilibrium, and etc. 

 

 

2.1 Game types 

There are many ways to classify games into different categories. For example, a game can have its player 

making choices simultaneously or sequentially. When decisions are made simultaneously, the game is 

static. On the other hand, when decisions are made in sequence, a subsequent player is able to make a 

decision based on former players’ action, thus the game is dynamic. Also, players in a game can have 

complete information or incomplete information. Combine the above two ideas, we can get four different 

types of game, and these four games have four corresponding equilibriums: 

 Static Dynamic 

Complete 

information 

Static game of complete information; 

Nash equilibrium 

Dynamic game of complete information; 

subgame perfect Nash equilibrium 

Incomplete 

information 

Static game of incomplete information; 

Bayesian Nash equilibrium 

Dynamic game of incomplete information; 

perfect Bayesian Nash equilibrium 
Table 1. Games and their equilibrium. 

In this paper, we will analysis prisoner’s dilemma, which is a static game with complete information, so 

the emphasis will be on Nash equilibrium. 

 

 

2.2 Nash equilibrium 

The Nash equilibrium, is a Strategy Profile of a game involving two or more players, in which each player 

is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by 

changing only their own strategy. 

Formally, in the case of static game with n players: 𝑖 = 1,2,… , 𝑛. ith player has Strategic Space Si with 

strategies 𝑠𝑖 ∈ 𝑆𝑖. If there is a Strategy Profile 𝑠∗ = {𝑠1
∗, 𝑠2
∗, … , 𝑠𝑛

∗} which satisfy: 

∀𝑖, 𝑠𝑖 ∈ 𝑆𝑖 ∶ $(𝑠1
∗, … , 𝑠𝑖

∗, … , 𝑠𝑛
∗) ≥ $(𝑠1

∗, … , 𝑠𝑖, … , 𝑠𝑛
∗) 

Such Strategy Profile is a Nash equilibrium. 



2.3 Classical prisoner’s dilemma 

The prisoner’s dilemma is an example of a game analyzed in game theory. It was originally framed by 

Merrill Flood and Melvin Dresher in 1950. Then Albert W. Tucker formalized the game. A slightly 

modified version game is as follows: 

Two criminals are arrested. Each of them cannot communicate with the other. Each player has the choices 

either to Defect, which is betray the other by testifying that the other committed the crime, or to 

Cooperate by staying silent. Depending on their choices, each of them receives a certain payoff: 

 B: Cooperate B: Defect 

A: Cooperate (3,3) (0,5) 

A: Defect (5,0) (1,1) 

Table 2. Payoff matrix for the Prisoners’ Dilemma, with first entry denotes the payoff of player A and second entry 

denotes the second player’s. The value of payoff are chosen as in [5]. 

If both prisoners choose to defect, then each of them will not be better off by changing his or her own 

strategy. To be specific, originally, each of them has payoff equal to 1, if one of them decided to 

cooperate in this case, his or her pay off would drop to 0, and therefore no one under this situation would 

change strategy. Mutual defection thus is a Nash equilibrium for this game. 

This game is called ‘dilemma’ because both of prisoners choosing to cooperate give the result with 

maximum total payoff, yet, after ‘rational’ decision making, both would make a choice resulting less 

payoff than the mutual cooperate case. What if a quantum version of the game is performed, will the 

dilemma be solved? 

 

 

3 Quantum game theory[1] 

Quantum game theory differ from the classical version in three ways: 

1. Superposed initial states: For a classical two-strategy case, one player’s choice can be 

represented by classical bit 0 or 1. While in quantum version, the bit is replaced by a qubit, which 

is initially prepared in superposition of 0 and 1. Player’s choice is corresponded to operation on 

the qubit. 

2. Quantum entanglement of initial states: The set of qubits provided to each player can be 

initially entangled, so one player’s operation on his or her qubit can affect others’ qubit, which 

means one’s choice can altering others’ expected  payoffs of the game. 

3. Superposition of strategies: In the quantum case, since the initial state is represented by a qubit, 

a player choosing a strategy is in analogy with rotating the qubit to a new state, or applying a 

unitary matrix to the state vector of the qubit. The new state may not be definite, it can still be in 

superposition of basis states with changed probability amplitudes. 

 

 

 



3.1 Quantum prisoner's dilemma 

The setup for a quantum version of this game includes: (i) a source of two qubits, one for each player; (ii) 

a set of instruments which allow each player to manipulate his or her qubit according to the strategy; (iii) 

a measurement device that measures the final state of the set of qubits, and determine the payoff of each 

player. And the setup is perfectly known by both players. 

The classical strategies D (defect) and C (cooperate) can be assigned to two basis vectors |𝐷⟩ and  |𝐶⟩ in 

the Hilbert space of a two-level system. Then the basis state of combined two qubit system can be written 

using tensor product, including |𝐶𝐶⟩,  |𝐶𝐷⟩, |𝐷𝐶⟩, and  |𝐷𝐷⟩, with first entry and second entry refer to 

player A’s and player B’s qubits respectively. 

 

Fig. 1. Setup of the game[5] 

The setup is depicted in Fig. 1. The initial state of two qubits is |𝜓0⟩ = 𝐽|𝐶𝐶⟩, where 𝐽 is a unitary 

operator that entangle the two qubit. Two players’ strategic moves are made through unitary operators 𝑈�̂� 

and 𝑈�̂�. Notice, each player can only operate on his or her own qubit; however, because the entangling of 

two qubits, one player’s action will affect the other. At the end, an operator  𝐽†̂, which is the conjugate 

transpose of the operator 𝐽, is applied to measure the final state.  

The reason for 𝐽†̂ able to measure the final state is much like what we did in class: we first apply an 

Hadamard gate to the first qubit, then apply a CNOT gate to make two qubit entangle; at the end, we take 

the measure by applying a CNOT gate and an Hadamard gate again.  

*In fact, if 𝐽 make two qubits entangle completely, the circuit can look like: 

 

Fig. 2. An analogue of the setup when two qubit are entangled completely 

The final state|𝜓𝑓⟩  is given by: 

 |𝜓𝑓⟩ = 𝐽
†̂(𝑈�̂�⊗𝑈�̂�)𝐽|𝐶𝐶⟩ (1) 

The probability |𝜓𝑓⟩ collapse to classical situations |𝐶𝐶⟩,  |𝐶𝐷⟩, |𝐷𝐶⟩, and  |𝐷𝐷⟩ can be calculated via 

inner product: 

 𝑃𝜇𝜈 = |⟨𝜇𝜈|𝜓𝑓⟩|
2
 (2) 
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Using payoff matrix in Table 2, players’ expected payoff should equal: 

 
$𝐴 = 3𝑃𝑐𝑐 + 1𝑃𝐷𝐷 + 5𝑃𝐷𝐶 + 0𝑃𝐶𝐷 

$𝐵 = 3𝑃𝑐𝑐 + 1𝑃𝐷𝐷 + 0𝑃𝐷𝐶 + 5𝑃𝐶𝐷 
 

(3) 

According to [5], the above expected payoff restrict the strategic space to a 2-parameter set of unitary 

matrices: 

 

 �̂�(𝜃, 𝜙) = (
𝑒𝑖𝜙 cos

𝜃

2
 sin

𝜃

2

sin
𝜃

2
𝑒−𝑖𝜙 cos

𝜃

2

) , 0 ≤ 𝜃 ≤ 𝜋 𝑎𝑛𝑑 0 ≤ 𝜃 ≤ 𝜋 (4) 

Cooperate and Defect are just two cases of the operator �̂�: 

 

�̂� = �̂�(0,0) = (
1 0
0 1

) 

�̂� = �̂�(𝜋, 0) = (
0 1
−1 0

) 

 

(5) 

The exact form for operator 𝐽 is more complicated. In order to make the game fair, 𝐽 must be symmetric 

when the two player is interchanged. This condition require: 

 [𝐽, �̂� ⊗ �̂� ] = 0, [𝐽, �̂� ⊗ �̂� ] = 0, [𝐽, �̂� ⊗ �̂� ] = 0 (6) 

where the square brackets stand for commute of two operator, that is, [𝑢, 𝑣] = 𝑢. 𝑣 − 𝑣. 𝑢. 

From [5],𝐽 that satisfy the condition in Eq. (6) has form: 

 𝐽 = 𝑒
𝑖𝛾�̂�⊗�̂�
2  (7) 

where 𝛾 is a real parameter between 0 and 𝜋/2 that tells how much two qubits are entangled. And the 

matrix exponential can be understand as a power series: 𝑒𝑋 = ∑
1

𝑘!
𝑋𝑘∞

𝑘=1 . 

Now we have sufficient idea about the circuit in Fig. 1. And we are able to calculate the expected payoff 

from the perspective of each player: first Plugging Eq. (7) and Eq. (4) into Eq. (1) gives the explicit form 

of final state of the two-qubit system; then using Eq. (2), probably of the final state collapse to each basis 

state can be found; finally, substitute these probabilities into Eq. (3). Let us consider two extreme cases of 

this game when two qubits are completely not entangled and completely entangled: 

 

 when 𝛾 = 0: 

For simplicity, reparametrize �̂� in a way so that it would only depend on a single parameter: 

𝑈�̂� = �̂�(𝑡𝜋, 0) 𝑓𝑜𝑟 𝑡 ∈ [0,1] 𝑎𝑛𝑑 𝑈�̂� = �̂�(0,−𝑡𝜋/2) 𝑓𝑜𝑟 𝑡 ∈ [−1,0] for player A, and similarly, 

for play B, 𝑈�̂� = �̂�(𝑠𝜋, 0) 𝑓𝑜𝑟 𝑠 ∈ [0,1] 𝑎𝑛𝑑 𝑈�̂� = �̂�(0,−𝑠𝜋/2) 𝑓𝑜𝑟 𝑠 ∈ [−1,0]. 

The expected payoff for player A is shown below (for detail see Appendix): 



 

Fig. 3. Player A’s expected payoff (𝛾 = 0).  

As shown in Fig. 3, from player A’s point of view, for any 𝑈�̂� player B would pick, �̂� always 

gives maximized payoff. The expected payoff for payer B is symmetric, so a rational decision for 

player B is also �̂�. In addition, by changing one’s own stratagem will not lead to increase in 

payoff. Thus in 𝛾 = 0 case, there is a single Nash equilibrium that is �̂� ⊗ �̂�. 

In fact, when 𝛾 = 0, two qubits in the game are completely not entangled, that is, back to the 

classical case with mutual defect as Nash equilibrium. 

 

 when 𝛾 = 𝜋/2: 
The expected payoff for player A is shown below: 

 

Fig. 3. Player A’s expected payoff (𝛾 = 𝜋/2 ).  

From player A’s respect, if B chooses �̂�, the strategy maximize payoff would be a strategy that 

does not exist in classical game: 

 �̂� = �̂� (0,
𝜋

2
) = (

𝑖 0
0 −𝑖

) (8) 

𝑈𝐴  𝑈𝐵  
D D 

C C 

Q Q 

𝑈𝐴  𝑈𝐵  
D D 

C C 

Q Q 



But if B chooses �̂�, the strategy maximize payoff would be �̂�. 

In this case strategy �̂� no longer guarantee maximum payoff for any strategy that the other player 

pick. Indeed �̂� ⊗ �̂� is even not a Nash equilibrium anymore. However, there exist a new Nash 

equilibrium, that is �̂� ⊗ �̂�, as $𝐴(�̂�, �̂�) = 3 and $𝐴(𝑈�̂�, �̂�) = cos
2 (
𝜃

2
) (3 sin2(𝜙) + cos2(𝜙) ≤

3 (from the symmetry of the game, same hold for play B). 

In this case, when two qubits are completely entangled, the two rational decision maker is able to 

reach maximum total payoff. The ‘dilemma’ is resolved! 

There are also many interesting study regarding two qubits are partially entangled (0 < 𝛾 < 𝜋/2). As did 

in [3] and [4], there exist two threshold value for 𝛾𝑡ℎ1 = arcsin(√1/5 ) , 𝛾𝑡ℎ2 = arcsin(√2/5 ) . With 

low entanglement between two qubit (0 ≤ 𝛾 ≤ 𝛾𝑡ℎ1), the Nash equilibrium, �̂� ⊗ �̂�, is the same as 

classical game; with moderate entanglement (𝛾𝑡ℎ1 ≤ 𝛾 ≤ 𝛾𝑡ℎ2), there are two Nash equilibriums �̂� ⊗

�̂� 𝑎𝑛𝑑 �̂� ⊗ �̂�; with high entanglement (𝛾𝑡ℎ2 ≤ 𝛾 ≤ 𝜋/2), the situation is close to complete entangled 

case, and �̂� ⊗ �̂� is the Nash equilibrium. 

 

 

4 Conclusion 

In classical prisoner’s dilemma, rational decision-makers fall into the equilibrium that does not maximize 

the total payoff, while in quantum version, with high enough entanglement between the plays’ qubits, the 

equilibrium also leads to maximum total payoff. It seems like quantum strategies have superior 

performance compared with classical strategies, just as what we learned in class that entanglement makes 

quantum computation more efficient and quantum communication cryptographically safer.  

Once more mature quantum circuit is developed, we might expect its implements on decision-making 

process that resolve problem similar as prisoner’s dilemma and bring about maximum total benefit, such 

as a quantum voting which might help increase public interest.  
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Appendix 

Maple code for plot expected payoff 

Load packages 

>  

>  

>  

 

Create two real variable 

>  

 

Pick a value of gamma (strength of entanglement) 

> : 

# g∈(0,Pi/2) 
 

Define basis states 

>  

>  

 

Define operator J and its conjugate transpose 

>  

 

>  

# 100 terms are used to approximate. For g=0 case, replace J by 

identity matrix since e^0=I. 

>  

 

Define UA and UB for case t,s>0 and t,s<0 

>  



>  

>  

>  

 

Define UA⊗UB 

>  

>  

>  

>  

 

Define the final state psi and expected payoff 

>  

 

Plot payoff function 

>  

>  
>  
>  
>  

 


