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The dynamics of two or three atoms interacting with a multi-mode field of a ring cavity is dis-
cussed. Concurrence is used as an indicator of the degree of entanglement, through which we are
able to study to retardation due to both finite time required for light to travel between atoms and
due to atomic interaction. Although the expected retardation is not observed due to inadequate
knowledge about parameters, we found adding atoms into the cavity might potentially enhance the
entanglement, and sustain the excited state of an already excited atom.

I. Introduction

Entanglement is an interesting phenomenon emerg-
ing from non-classical correlations between quantum sys-
tems. It is being wildly studied due to its application
on quantum computation and quantum communication.
There are various methods to generate entanglement be-
tween different systems. Atoms can be entangled by
slowly passing through a cavity, and the entanglement
can be detected by measuring the atomic state[5]. Pho-
tons can be entangled in a downconversion process, and
polarizations of a photon pair are correlated[6]. As dis-
cussed through the semester, for example in the Jaynes-
Cummings model, atoms and photons can be entangled
as well.

One motivation of studying the retardation on the dy-
namics of entanglement is its potential application on
transferring entanglement between distant quantum sys-
tems[7]. Numbers of experiments have successfully cre-
ated quantum gates which are essential components of
quantum networks[8]. Such setup would involve cou-
pling a system with a large environment over distance.
Normally, under the Markovian approximation, the en-
tanglement would decay exponentially. However, for cer-
tain types of entanglement, the decay is non-exponential,
which is known as the sudden death of entanglement
(SDE)[9]. In addition to that, with proper conditions, the
already destroyed entanglement could be restored, which
is known as the sudden birth of entanglement (SBE)[10].

Experimentally, cavities are commonly used to en-
hance the light-matter interaction as it creates a large
coupling strength. In such a case, the system is re-
versible and non-Markovian, and SBE may be achieved.
A conventional way to study the dynamics of such a sys-
tem uses the master equation approach. For a cavity
with multiple atoms, frequently there are a few assump-
tions: (i) those atoms are separated by large distance
such that there is no direct interaction between them;
(ii) one atom’s influences on another is effectively instan-
taneously. Such assumptions are safe for a single-mode
cavity. When there are more modes in the cavity, the re-
tardation effects become noticeable as the time delay for
light propagation between atoms is equivalent to a phase
difference. As a result, the distance between atoms is
an important parameter in the population and entangle-

ment dynamics. To be specific, whether SDE or SBE can
occur or not can depend on the distance.

In this paper, we study the effect of retardation on
the population and entanglement dynamics of 2 and 3
two-level atoms in a ring cavity. Using the Schrodinger
equation in the interaction picture, we are able to find the
time evolution of the population of excitation. Then by
using the concurrence as a measure of entanglement, we
can also trace the time evolution of entanglement. In the
calculation part, we shall show the retardation effects do
affect the entanglement between atoms. However, abrupt
kinks in the time evolution of the populations and the
concurrence corresponding to the time required for the
photon to travel between the atoms or loop around the
cavity, which is observed in the original paper’s plots[1],
is not observed in our plots due to insufficient information
about parameters. Similarly, the SDE and SBE are not
observed in our plots.

Sec. II introduces the model and gives a brief summary
for the major result for the two-atom case. Detailed cal-
culation for the three-atom case is in Sec. III, and Sec.
IV shows our results.

II. The model

The setup is consisted by identical atoms inside a ring
cavity. Distance between atomi and atomj is denoted as
xi − xj = xij (FIG. 1). The atoms are modeled as two-
level systems with ground state |gi〉 and excited state |ei〉,
and those two states are separated by energy ~ωa. The
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FIG. 1. Schematic diagram of the system. Inside a one-
dimensional ring cavity of round trip path L, identical two-
level atoms are seperated by distant xij .
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cavity mode frequency are denoted as ωµ.

A. Summary for two-atom results

The two-atom case are descirbed in detail in [1] and
[2]. Also, the overall ideal is similar to that of three-
atom case. Therefore only the most important results of
the two-atom case are listed here. From both [1] and [2],
the probability amplitudes of atoms and field has time
evolution as follows:

ḃj(t) =
∑
µ

gµjbµ(t), j ∈ {1, 2}, (II.1)

ḃµ(t) = −i∆µbµ(t)−
2∑
j=1

g∗µjbj(t). (II.2)

Here bj is for atomic state, and bµ is for field state. ∆µ =
ωµ−ωa is the detuning of the cavity mode frequency from
atomic transition frequency. gµj is the coupling constant
from dipole approximation of a one dimensional case [4]:

gµi =gµ(~xi)

=
Eµ
~

(~di · êl)ei
~kµ·~xi

=

√
ωµ

2ε0~L
(~di · êl)ei

~kµ·~xi . (II.3)

Eq. (II.1-2) can be used directly to study the time evo-
lution of probability amplitude (see Maple code in Ap-
pendix for detail). Alternatively, using the set of coupled
first order differential equations Eq. (II.1-2), we can have
uncoupled second order differential equation

ḃjt =
∑
µ

gµjb+ µ(0)e−i∆µt

+

2∑
j′=1

∫ t

0

dt′
∑
µ

gµjg
∗
µj′bj′(t

′)e−i∆µ(t−t′). (II.4)

Using Eq. (II.4) we can perform a numerical integration
for the time evolution of probability amplitude as well
(see MATLAB code in Appendix for detail).

Concurrence for the two-atom case turned out to be
[1][2]

C(t) = 2max{0, |b∗1(t)b2(t)|}. (II.5)

III. Calculation
A. Hamiltonian of the System

For a quantum system comprising of atoms and in-
teracting electromagnetic (EM) fields, the Hamiltonian
commonly writes

Ĥ = Ĥa + Ĥf + Ĥint. (III.1)

In two-level atomic model with the ground state energy
offset to zero, the free Hamiltonian of three identical
atoms can be expressed as

Ĥa =

3∑
j=1

~ωaσ̂+j σ̂−j , (III.2)

where ωa is the atomic transition frequency and j ∈
{1, 2, 3} labels the atoms. In Fock state representation,

the free Hamiltonian of the field (with the constant part
of the harmonic oscillator formalism for the EM field
dropped) is

Ĥf = ~
∑
µ

ωnâ
†
µâµ, (III.3)

where ωn is the frequency of a unique cavity mode asso-
ciated with wave number kn, with the relation given by
kn = ωn/c; the script µ denotes the set of wave vector
kn and polarization es of the field that couples with the
atom. In dipole approximation, which models atoms in
the presence of an external electric field as an electric
dipole and regards the interaction energy as the poten-
tial energy stored as the dipole energy, the interaction
Hamiltonian is given by

Ĥint = −
3∑
j=1

d̂j · Ê(xj), (III.4)

where xj denotes the atom j’s position. This follows the
classical dipole energy expression except that both the

dipole and the electric field terms (i.e., d̂ and Ê) are
quantized. Define the matrix elements for atom (dipole)

j dj = 〈gj | d̂ |ej〉 and d∗j = 〈ej | d̂ |gj〉, with the diagonal
terms dropped due to their odd parity function nature
whose integral over all space must vanish, we have

d̂j = dj σ̂+j + d∗j σ̂−j . (III.5)

In the case of a one-dimensional multi-mode cavity with
length L, the quantization of the electric field is given by

Ê(x, t) = i
∑
µ

εµ

[
âµe

i(kn·x−ωnt) − â†µe−i(kn·x−ωnt)
]
ês,

(III.6)

where εµ ≡
√

~ωn
2εoL

. Further specify the quantized field’s

parameter as (xj , t) since only the fields at where atoms
are can make a contribution and the interaction Hamil-
tonian becomes

Ĥint =−
3∑
j=1

(dj σ̂+j + d∗j σ̂−j)

i
∑
µ

εµ

[
âµe

i(kn·xj−ωnt) − â†µe−i(kn·xj−ωnt)
]
ês

=− i~
3∑
j=1

∑
µ

εµ
~
[
(dj · ês)σ̂+j + (d∗j · ês)σ̂−j

]
[
âµe

i(kn·xj−ωnt) − â†µe−i(kn·xj−ωnt)
]
. (III.7)

To proceed, we pull out the time dependence of the op-
erators (σ̂’s and â’s). Applying Heisenberg Equation of
Motion for σ̂+j , σ̂−j , âµ, and â†µ separately, we can get a
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set of solutions:

âµ(t) = âµ(0)eiωnt, (III.8)

â†µ(t) = â†µ(0)e−iωnt, (III.9)

σ̂−j(t) = σ̂−j(0)eiωat, (III.10)

and σ̂+j(t) = σ̂+j(0)e−iωat. (III.11)

Plug the solution set above into Eq.(III.7) and apply Ro-
tating Wave Approximation (i.e., drop the fast oscillating
terms with ei(ωa+ωµ)t and e−i(ωa+ωµ)t), the interaction
Hamiltonian takes the form

Ĥint =− i~
3∑
j=1

∑
µ

[
gµ(xj , t)σ̂+j(t)âµ(t)

− g∗µ(xj , t)σ̂−j(t)â
†
µ(t)

]
=− i~

3∑
j=1

∑
µ

[
gµj σ̂+j âµ − g∗µj σ̂−j â†µ

]
(t) (III.12)

where gµj = gµ(xj , t) ≡ εµ
~ (d̂j · ês)ei(kn·xj−ωnt) is the

Rabi frequency signifying the coupling strength between
atom j and cavity mode µ.

To find the time evolution of the system, we switch
and seek solutions to the Schrodinger equation in the
interaction picture:

i~
∂ |Ψ(t)〉
∂t

= ĤI
int |Ψ(t)〉 , (III.13)

where the system described by the state vector |Ψ(t)〉
(represented in interaction picture) and the superscript

of I over Ĥint indicates the interaction picture form for
Eq. (III.12), which is given by

ĤI
int = eiĤot/~Ĥinte

−iĤot/~, (III.14)

where Ĥo = Ĥa + Ĥf given by Eq.(III.2) and Eq.(III.3).
Let |ψ(t)〉 represent the state vector of the system in
Schrödinger picture, the transformation is

|Ψ(t)〉 = eiĤot/~ |ψ(t)〉 . (III.15)

Plug the above-mentioned transformations in Eq.(III.13)
and have

i~
∂

∂t

[
eiĤot/~ |ψ(t)〉

]
= eiĤot/~Ĥint |ψ(t)〉 , (III.16)

or, equivalently,

∂

∂t

[
eiĤot/~ |ψ(t)〉

]
=− eiĤot/~

3∑
j=1

∑
µ

[
gµj σ̂+j âµ − g∗µj σ̂−j â†µ

]
(t) |ψ(t)〉 .

(III.17)

In order to observe retardation effect of the system which
is caused by, in classical view, a time delay needed for
light to travel from one atom to another, we keep the
propagation time scale sufficiently small so that the sys-
tem is in coherent dynamics described by the Hamil-
tonian above such that there is no considerations over
cavity loss, interaction with the environment, sponta-

neous emission of fields outside the interacting modes,
etc. needed. We also keep the system as simple as pos-
sible and allow no more than triple excitation (on atoms
and/or on cavity modes) in the system, as if the excita-
tion states in the cavity all come from the photon emis-
sion by atom(s).

B. Case I: Single Excitation

Let the Schrödinger-picture state vector for single ex-
citation (with a superscript of I) of the system be∣∣ψI(t)

〉
=b1(t) |e1g2g3{0}µ〉+ b2(t) |g1e2g3{0}µ〉

+ b3(t) |g1g2e3{0}µ〉+
∑
µ

bµ(t) |g1g2g3{1}µ〉

=

3∑
j=1

bj(t) |ejgj+1gj+2{0}µ〉

+
∑
µ

bµ(t) |g1g2g3{1}µ〉 , (III.18)

where the atomic index j ∈ {1, 2, 3} ∼= (isomorphic to)
Z3 such that 3 + 1 = 1 define a cycle of 1, 2, and 3; e
and g stand for the excited and ground state of the atom,
respectively; {0}µ indicates that all possible cavity modes
are in Fock state |0〉 while {1}µ indicates that mode µ
is in |1〉 with the rest being in |0〉. Each cat state is
expressed in the product state of the individual states it
comprises, e.g., |e1g2g3{0}µ〉 = |e1〉⊗ |g2〉⊗ |g3〉⊗ |{0}µ〉.

Before proceeding, we transform the state vector in
Interaction Picture in accordance with Eq.(III.15) and
have ∣∣Ψ(t)I

〉
=eiĤot/~

∣∣ψI(t)
〉

=

3∑
j=1

bj(t)e
iωat |ejgj+1gj+2{0}µ〉

+
∑
µ

bµ(t)eiωµt |g1g2g3{1}µ〉 . (III.19)

Now, offset all the rotation phases by e−iωat so that we
make measurements in the reference frame that rotates
in parallel with the atomic transition frequency and have∣∣ΨI(t)

〉
=

3∑
j=1

bj(t) |ejgj+1gj+2{0}µ〉

+
∑
µ

bµ(t)e−i∆µt |g1g2g3{1}µ〉 , (III.20)

where ∆µ ≡ ωa − ωµ.
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1. Single-Excitation Solution

Apply Eq. (III.17) onto Eq. (III.18) and we get the
left hand side (LHS):

LHS =

3∑
j=1

ḃj(t) |ejgj+1gj+2{0}µ〉

+
∑
µ

ḃµ(t)e−i∆µt |g1g2g3{1}µ〉

−
∑
µ

i∆µbµ(t)e−i∆µt |g1g2g3{1}µ〉 , (III.21)

and right hand side (RHS):

RHS =−
[ 3∑
j=1

∑
µ

gµjbµ(t) |ejgj+1gj+2{0}µ〉

−
3∑
j=1

∑
µ

g∗µjbj(t)e
−i∆µt |g1g2g3{1}µ〉

]
.

(III.22)

Equating LHS to RHS, we have

ḃj(t) = −
∑
µ

gµjbµ(t) (III.23)

ḃµ(t) = i∆µbµ(t) +

3∑
j=1

g∗µjbj(t). (III.24)

This is the analytical solution of the ḃ(t)’s. The ultimate
solution to the b(t)’s requires further numerical methods.

2. Single-Excitation Concurrence

Define a new basis in terms of the states for two atoms:
|1〉 = |ejej+1〉, |2〉 = |ejgj+1〉, |3〉 = |gjej+1〉, and |4〉 =
|gjgj+1〉. The concurrence between two atoms in this
basis is given by [3]:

C(t) = 2max{0, |ρ23(t)| −
√
ρ44(t)ρ11(t),

|ρ14(t)| −
√
ρ22(t)ρ33(t)}. (III.25)

To find the concurrence between atoms 1 and 2, we
first find the density matrix:

ρI =
∣∣ΨI(t)

〉 〈
ΨI(t)

∣∣ =
∣∣ψI(t)

〉 〈
ψI(t)

∣∣
= |b1(t)|2 |e1g2g3{0}µ〉 〈e1g2g3{0}µ|

+ |b2(t)|2 |g1e2g3{0}µ〉 〈g1e2g3{0}µ|
+ |b3(t)|2 |g1g2e3{0}µ〉 〈g1g2e3{0}µ|

+
∑
µ

|bµ(t)|2 |g1g2g3{1}µ〉 〈g1g2g3{1}µ|

+ b1(t)b∗2(t) |e1g2g3{0}µ〉 〈g1e2g3{0}µ|
+ b2(t)b∗1(t) |g1e2g3{0}µ〉 〈e1g2g3{0}µ|
+ND, (III.26)

where ND stands for non-diagonal terms that will be
traced out when taking partial trace over atom 3 and
cavity fields.

Now take the partial trace over atom 3 and cavity fields
on Eq. (III.25) and express it in the basis given above,
we have

ρI
(12) = |b1(t)|2 |2〉 〈2|+ |b2(t)|2 |3〉 〈3|

+
[
|b3(t)|2 +

∑
µ

|bµ(t)|2
]
|4〉 〈4|

+ b1(t)b∗2(t) |2〉 〈3|+ b2(t)b∗1(t) |3〉 〈2| . (III.27)

Plug this into Eq. (III.25),

CI
(12)(t) = 2max{0, |b1(t)b∗2(t)| ,− |b1(t)| |b2(t)|}

= 2max{0, |b1(t)b∗2(t)|}. (III.28)

Similarly, for concurrence between atoms 2 and 3, and 3
and 1, we have

CI
(23)(t) = 2max{0, |b2(t)b∗3(t)|}, (III.29)

and CI
(31)(t) = 2max{0, |b3(t)b∗1(t)|}. (III.30)

The average concurrence for single excitation, therefore,
is 〈

CI(t)
〉

=
1

3

[
CI

(12)(t) + CI
(23)(t) + CI

(31)(t)
]
. (III.31)

C. Case II: Double Excitation

Following the same vector state notation and the ro-
tating frame as in single excitation, for double excitation,
the state vector can be expressed as∣∣ψII(t)

〉
=

3∑
j=1

bjj+1(t) |ejej+1gj+2{0}α〉

+

3∑
j=1

∑
α

bαj(t) |ejgj+1gj+2{1}α〉

+
∑
α>β

bαβ(t) |g1g2g3{1}α{1}β〉

+
∑
α

bαα(t) |g1g2g3{2}α〉 . (III.32)

Note that
∑
α>β

reads the summation over the index pair

{α, β} such that α > β.
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1. Double-Excitation Solution

Apply Eq.(III.17) on (III.32), we get

LHS =

3∑
j=1

ḃjj+1(t) |ejej+1gj+2{0}α〉

+

3∑
j=1

∑
α

ḃαj(t)e
−i∆αt |ejgj+1gj+2{1}α〉

+
∑
α>β

ḃαβ(t)e−i(∆α+∆β)t |g1g2g3{1}α{1}β〉

+
∑
α

ḃαα(t)e−2i∆αt |g1g2g3{2}α〉

− i∆α

3∑
j=1

∑
α

bαj(t)e
−i∆αt |ejgj+1gj+2{1}α〉

− i(∆α + ∆β)
∑
α>β

bαβ(t)e−i(∆α+∆β)t |g1g2g3{1}α{1}β〉

− 2i∆α

∑
α

bαα(t)e−2i∆αt |g1g2g3{2}α〉 , (III.33)

and

RHS =

−

[
3∑
j=1

∑
α

(gαjbαj+1 + gαj+1bαj) |ejej+1gj+2{0}α〉

+

3∑
j=1

(∑
α>β

gβjbαβ +
∑
α<β

gβjbβα
)
e−i∆αt |ejgj+1gj+2{1}α〉

+

3∑
j=1

∑
α

√
2gαjbααe

−i∆αt |ejgj+1gj+2{1}α〉

−
3∑
j=1

∑
α

(g∗αj+2bj+2,j + g∗αj+1bjj+1)e−i∆αt |ejgj+1gj+2{1}α〉

−
3∑
j=1

∑
α>β

(g∗βjbαj + g∗αjbβj)e
−i(∆α+∆β)t |g1g2g3{1}α{1}β〉

−
3∑
j=1

∑
α

√
2g∗αjbαje

−2i∆αt |g1g2g3{2}α〉

]
. (III.34)

Equating LHS to RHS, we get the solutions:

ḃjj+1 =−
∑
α

(gαjbαj+1 + gαj+1bαj)

ḃαj =i∆αbαj + g∗αj+2bj+2,j + g∗αj+1bjj+1

−
√

2gαjbαα −
∑

β(β>α)

gβjbβα −
∑

β(β<α)

gβjbαβ

ḃαβ =i(∆α + ∆β)bαβ +

3∑
j=1

(g∗βjbαj + g∗αjbβj)

ḃαα =2i∆αbαα +

3∑
j=1

√
2g∗αjbαj . (III.35)

2. Double Excitation Concurrence

Expand the j part for Eq.(III.32), we get∣∣ψII(t)
〉

=b12(t) |e1e2g3{0}α〉
+ b23(t) |g1e2e3{0}α〉
+ b31(t) |e1g2e3{0}α〉

+
∑
α

bα1(t) |e1g2g3{1}α〉

+
∑
α

bα2(t) |g1e2g3{1}α〉

+
∑
α

bα3(t) |g1g2e3{1}α〉

+
∑
α>β

bαβ(t) |g1g2g3{1}α{1}β〉

+
∑
α

bαα(t) |g1g2g3{2}α〉 . (III.36)

Have the density matrix of it and trace over atom 3 and
the cavity modes, we have

ρII
(12) = |b12(t)|2 |1〉 〈1|+ (|b31(t)|2 +

∑
α

|bα1(t)|2) |2〉 〈2|

+ (|b23(t)|2 +
∑
α

|bα2(t)|2) |3〉 〈3|

+
(∑

α

|bα3(t)|2 +
∑
α>β

|bαβ(t)|2

+
∑
α

|bαα(t)|2
)
|4〉 〈4|

+ (b31(t)b∗23(t) +
∑
α

bα1(t)b∗α2(t)) |2〉 〈3|

+ (b23(t)b∗31(t) +
∑
α

bα2(t)b∗α1(t)) |3〉 〈2| .

(III.37)

Plug this into Eq. (III.25), we have

CII
(12)(t)

=2max

{
0,
∣∣b31(t)b∗23(t) +

∑
α

bα1(t)b∗α2(t)
∣∣

−
∣∣b(12)(t)

∣∣√∑
α

|bα3(t)|2 +
∑
α>β

|bαβ(t)|2 +
∑
α

|bαα(t)|2
}
.

(III.38)

Similarly, for concurrence between atom 2 and 3,

CII
(23)(t)

=2max

{
0,
∣∣b12(t)b∗31(t) +

∑
α

bα2(t)b∗α3(t)
∣∣

−
∣∣b(23)(t)

∣∣√∑
α

|bα1(t)|2 +
∑
α>β

|bαβ(t)|2 +
∑
α

|bαα(t)|2
}
,

(III.39)
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and for atom 3 and 1,

CII
(31)(t)

=2max

{
0,
∣∣b23(t)b∗12(t) +

∑
α

bα3(t)b∗α1(t)
∣∣

−
∣∣b(31)(t)

∣∣√∑
α

|bα2(t)|2 +
∑
α>β

|bαβ(t)|2 +
∑
α

|bαα(t)|2
}
.

(III.40)

Lastly, the average concurrence for double excitation
writes:

〈
CII(t)

〉
=

1

3

[
CII

(12)(t) + CII
(23)(t) + CII

(31)(t)
]
. (III.41)

D. Case III: Triple Excitation

Following the previous frame and notation conventions, we have the triple excitation state vector:

∣∣ψIII(t)
〉

=b123(t) |e1e2e3{0}α〉+

3∑
j=1

∑
α

bαjj+1(t) |ejej+1gj+2{1}α〉

+

3∑
j=1

∑
α

bααj(t) |ejgj+1gj+2{2}α〉+
3∑
j=1

∑
α>β

bαβj(t) |ejgj+1gj+2{1}α{1}β〉

+
∑

α>β>γ

bαβγ(t) |g1g2g3{1}α{1}β{1}γ〉+
∑
α>β

bαββ(t) |g1g2g3{1}α{2}β〉

+
∑
α>β

bααβ(t) |g1g2g3{2}α{1}β〉+
∑
α

bααα(t) |g1g2g3{3}α〉 . (III.42)

1. Triple-Excitation Solution

Apply Eq.(III.17) onto Eq.(III.42), we get

LHS =ḃ123(t) |e1e2e3{0}α〉+

3∑
j=1

∑
α

ḃαjj+1(t)e−i∆αt |ejej+1gj+2{1}α〉

+

3∑
j=1

∑
α

ḃααj(t)e
−2i∆αt |ejgj+1gj+2{2}α〉+

3∑
j=1

∑
α>β

ḃαβj(t)e
−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

+
∑

α>β>γ

ḃαβγ(t)e−i(∆α+∆β+∆γ)t |g1g2g3{1}α{1}β{1}γ〉+
∑
α>β

ḃαββ(t)e−i(∆α+2∆β)t |g1g2g3{1}α{2}β〉

+
∑
α>β

ḃααβ(t)e−i(2∆α+∆β)t |g1g2g3{2}α{1}β〉+
∑
α

ḃααα(t)e−3i∆αt |g1g2g3{3}α〉

− i∆α

3∑
j=1

∑
α

bαjj+1(t)e−i∆αt |ejej+1gj+2{1}α〉 − 2i∆α

3∑
j=1

∑
α

bααj(t)e
−2i∆αt |ejgj+1gj+2{2}α〉

− i(∆α + ∆β)

3∑
j=1

∑
α>β

bαβj(t)e
−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

− i(∆α + ∆β + ∆γ)
∑

α>β>γ

bαβγ(t)e−i(∆α+∆β+∆γ)t |g1g2g3{1}α{1}β{1}γ〉

− i(∆α + 2∆β)
∑
α>β

bαββ(t)e−i(∆α+2∆β)t |g1g2g3{1}α{2}β〉

− i(2∆α + ∆β)
∑
α>β

bααβ(t)e−i(2∆α+∆β)t |g1g2g3{2}α{1}β〉

− 3i∆α

∑
α

bααα(t)e−3i∆αt |g1g2g3{3}α〉 . (III.43)
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The RHS is

RHS =−

[
3∑
j=1

∑
α

gαjbαj+1,j+2(t) |e1e2e3{0}α〉

+

3∑
j=1

∑
α

√
2(gαjbααj+1(t) + gαj+1bααj(t))e

−i∆αt |ejej+1gj+2{1}α〉

+

3∑
j=1

∑
α>β

(gβjbαβj+1(t) + gβj+1bαβj(t))e
−i∆αt |ejej+1gj+2{1}α〉

+

3∑
j=1

∑
α<β

(gβjbβαj+1(t) + gβj+1bβαj(t))e
−i∆αt |ejej+1gj+2{1}α〉

+

3∑
j=1

∑
α>β>γ

gγjbαβγ(t)e−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

+

3∑
j=1

∑
α>γ>β

gγjbαγβ(t)e−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

+
3∑
j=1

∑
γ>α>β

gγjbγαβ(t)e−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

+

3∑
j=1

∑
α>β

√
2(gβjbαββ(t) + gαjbααβ(t))e−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

+

3∑
j=1

(∑
α<β

gβjbβαα(t) +
∑
α>β

gβjbααβ(t)
)
e−2i∆αt |ejgj+1gj+2{2}α〉

+

3∑
j=1

∑
α

√
3gαjbααα(t)e−2i∆αt |ejgj+1gj+2{2}α〉

−
3∑
j=1

∑
α

g∗αj+2b123(t)e−i∆αt |ejej+1gj+2{1}α〉

−
3∑
j=1

∑
α

√
2(g∗αj+1bαjj+1(t) + g∗αj+2bαj+2,j(t))e

−2i∆αt |ejgj+1gj+2{2}α〉

−
3∑
j=1

∑
α>β

(g∗βj+1bαjj+1(t) + g∗βj+2bαj+2,j(t))e
−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

−
3∑
j=1

∑
α>β

(g∗αj+1bβjj+1(t) + g∗αj+2bβj+2,j(t))e
−i(∆α+∆β)t |ejgj+1gj+2{1}α{1}β〉

−
3∑
j=1

∑
α

√
3g∗αjbααj(t)e

−3i∆αt |g1g2g3{3}α〉

−
3∑
j=1

∑
α>β

g∗βjbααj(t)e
−i(2∆α+∆β)t |g1g2g3{2}α{1}β〉

−
3∑
j=1

∑
α>β

g∗αjbββj(t)e
−i(∆α+2∆β)t |g1g2g3{1}α{2}β〉

−
3∑
j=1

∑
α>β>γ

(g∗γjbαβj(t) + g∗βjbαγj(t) + g∗αjbβγj(t))e
−i(∆α+∆β+∆γ)t |g1g2g3{1}α{2}β{1}γ〉

−
3∑
j=1

∑
α>β

√
2g∗αjbαβj(t)e

−i(2∆α+∆β)t |g1g2g3{2}α{1}β〉

−
3∑
j=1

∑
α>β

√
2g∗βjbαβj(t)e

−i(∆α+2∆β)t |g1g2g3{1}α{2}β〉

]
. (III.44)
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Equating LHS to RHS, we get:

ḃ123(t) =−
3∑
j=1

∑
α

gαjbαj+1,j+2(t)

ḃαjj+1(t) =i∆αbαjj+1(t)−
√

2(gαjbααj+1(t) + gαj+1bααj(t))

−
∑

β(α>β)

(gβjbαβj+1(t) + gβj+1bαβj(t))−
∑

β(α<β)

(gβjbβαj+1(t) + gβj+1bβαj(t))

+ g∗αj+2b123(t)

ḃααj(t) =2i∆αbααj(t)−
( ∑
β(α<β)

gβjbβαα(t) +
∑

β(α>β)

gβjbααβ(t)
)

−
√

3gαjbααα(t) +
√

2(g∗αj+1bαjj+1(t) + g∗αj+2bαj+2,j(t))

ḃαβj(t) =i(∆α + ∆β)bαβj(t)−
∑

γ(α>β>γ)

gγjbαβγ(t)−
∑

γ(α>γ>β)

gγjbαγβ(t)

−
∑

γ(γ>α>β)

gγjbγαβ(t)−
√

2(gβjbαββ(t) + gαjbααβ(t))

+ g∗βj+1bαjj+1(t)g∗βj+2bαj+2,j(t) + g∗αj+1bβjj+1(t) + g∗αj+2bβj+2,j(t)

ḃαβγ(t) =i(∆α + ∆β + ∆γ)bαβγ(t) +

3∑
j=1

(g∗γjbαβj(t) + g∗βjbαγj(t) + g∗αjbβγj(t))

ḃαββ(t) =i(∆α + 2∆β)bαββ(t) +

3∑
j=1

g∗αjbββj(t) +

3∑
j=1

√
2g∗βjbαβj(t)

ḃααβ(t) =i(2∆α + ∆β)bααβ(t) +

3∑
j=1

g∗βjbααj(t) +

3∑
j=1

√
2g∗αjbαβj(t)

ḃααα(t) =3i∆αbααα(t) +

3∑
j=1

√
3g∗αjbααj(t). (III.45)

2. Triple-Excitation Concurrence

As conventionally, take the partial trace over atom 3 and cavity fields and write down the reduced density matrix
from Eq.(III.42) in the basis introduced previously:

ρIII
(12)(t) =|b123(t)|2 |1〉 〈1|+

∑
α

|bα12(t)|2 |1〉 〈1|

+
∑
α

[
|bαα3(t)|2 + |bααα(t)|2

]
|4〉 〈4|+

∑
α>β>γ

|bαβγ(t)|2 |4〉 〈4|

+
∑
α>β

[
|bαβ3(t)|2 + |bαββ(t)|2 + |bααβ(t)|2

]
|4〉 〈4|

+
[∑

α

bα31(t)b∗α23(t) +
∑
α

bαα1(t)b∗αα2(t) +
∑
α>β

bαβ1(t)b∗αβ2(t)
]
|2〉 〈3|

+N12, (III.46)

where the N12 term stands for the non-contributing parts to the concurrence between atoms 1 and 2. Plug into
Eq.(III.25) we have the reduced concurrence (since ρ14 should vanish in ρIII

(12)) for atoms 1 and 2:

CIII
(12)(t) =2max{0,

∣∣∣ρIII
(12)23(t)

∣∣∣−√ρIII
(12)44(t)ρIII

(12)11(t)}, (III.47)
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where

ρIII
(12)23(t) =

∑
α

bα31(t)b∗α23(t) +
∑
α

bαα1(t)b∗αα2(t) +
∑
α>β

bαβ1(t)b∗αβ2(t),

ρIII
(12)11(t) =|b123(t)|2 +

∑
α

|bα12(t)|2,

and ρIII
(12)44(t) =

∑
α

[
|bαα3(t)|2 + |bααα(t)|2

]
+

∑
α>β>γ

|bαβγ(t)|2

+
∑
α>β

[
|bαβ3(t)|2 + |bαββ(t)|2 + |bααβ(t)|2

]
. (III.48)

Similarly, for Concurrence between atoms 2 and 3:

CIII
(23)(t) =2max{0,

∣∣∣ρIII
(23)23(t)

∣∣∣−√ρIII
(23)44(t)ρIII

(23)11(t)}, (III.49)

where

ρIII
(23)23(t) =

∑
α

bα12(t)b∗α31(t) +
∑
α

bαα2(t)b∗αα3(t) +
∑
α>β

bαβ2(t)b∗αβ3(t),

ρIII
(23)11(t) =|b123(t)|2 +

∑
α

|bα23(t)|2,

and ρIII
(23)44(t) =

∑
α

[
|bαα1(t)|2 + |bααα(t)|2

]
+

∑
α>β>γ

|bαβγ(t)|2

+
∑
α>β

[
|bαβ1(t)|2 + |bαββ(t)|2 + |bααβ(t)|2

]
. (III.50)

And for atoms 3 and 1,

CIII
(31)(t) =2max{0,

∣∣∣ρIII
(31)23(t)

∣∣∣−√ρIII
(31)44(t)ρIII

(31)11(t)}, (III.51)

where

ρIII
(31)23(t) =

∑
α

bα23(t)b∗α12(t) +
∑
α

bαα3(t)b∗αα1(t) +
∑
α>β

bαβ3(t)b∗αβ1(t),

ρIII
(31)11(t) =|b123(t)|2 +

∑
α

|bα31(t)|2,

and ρIII
(31)44(t) =

∑
α

[
|bαα2(t)|2 + |bααα(t)|2

]
+

∑
α>β>γ

|bαβγ(t)|2

+
∑
α>β

[
|bαβ2(t)|2 + |bαββ(t)|2 + |bααβ(t)|2

]
. (III.52)

Finally, the average Concurrence for triple excitation is〈
CIII(t)

〉
=

1

3

[
CIII

(12)(t) + CIII
(23)(t) + CIII

(31)(t)
]
. (III.53)

IV. Results

The general features of concurrence is already dis-
cussed on the analytical section of the project. This
section discusses the numerical calculation of transient
behaviour of populations and concurrence. Due to in-
adequate information about some of the constants like

dipole matrix element (~dj), vacuum resonant frequency

of the central resonant mode (Ωo) and atomic wavelength
(λα) in the project paper, we cannot reciprocate the re-
sults in the paper in exact form and thus, cannot discuss
all the features of the project. With these limitations,
we can only discuss the single-excitation case with zero
inter-atomic spacing.
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A. Effects of retardation on the population
dynamics

The transient behaviour of the population dynamics is
a key concept towards understanding the transient be-
haviour of the concurrence. Thus, it is important to un-
derstand the effect of retardation on the population dy-
namics before beginning the effects on the concurrence.

However, we are interested in the numerical solution
of the problem and thus, some initial conditions are re-
quired. The set of coupled Eq. (III.23) and (III.24)
describes the population dynamics for single-excitation
case, and we assume that the atoms were initially pre-
pared (i.e. at time t=0) in a product state

|ψ(0)〉 = |e1〉 ⊗ |g2〉 ⊗ |{0}µ〉 ≡ |e1g2{0}µ〉 .

Mathematically, this assumption means that the proba-
bility amplitude of first atom being in excited state at
time t=0 is 1, and rest of the probability amplitudes (in-
cluding photon being in cavity mode) is 0 i.e. b1(0) = 1
and b2(0) = b3(0) = bµ(0) = 0.

We are interested in comparing the results between
two atoms and three atoms case and analyze the major
differences. FIG. 2(a) and (b) show the transient prob-
abilities of case of 2-atom with no separation and case
of 3-atom with no separation respectively. At t=0, the
photon is completely absorbed by the first atom as our
initial condition suggests. As time increases, the photon
is distributed between atoms and cavity modes till max-
imum distribution occurs at some time slightly less than
2µs. The distribution is repetitive in certain time inter-
val. We used 99 different frequency modes for photon
in our numerical calculation and there should be uneven
distribution of photon for such different frequency modes
because of the varying value of detuning for each mode.
Due to interference effect, the probability distribution
should not be periodic as we can see in project paper’s
result where the transient probability is never 1 except at
t=0 and decreases exponentially with time. There might
be something wrong with our numerical code and the
obtained result looks like a single mode case where the
distribution of photon is occurring between the atoms
and a mode of the cavity.

The major difference between the two atom and the
three atom case is that the first atom never completely
deexcites, and the second and the third atom never com-
pletely excites in three atoms case wheres both of the
atoms excites and deexcites with 100% probability in
two atoms case. Since the same maximum distribution
(around 28%) is happening in both two and three atom
case, the distribution can be quantified to be more in
three atom case.

To see the immediate evolution of excitation, we can
consider the atomic dynamics in terms of the collective

Dicke states:

|g〉 = |g1〉 ⊗ |g2〉 ,

|s〉 =
1√
2

(|e1〉 ⊗ |g2〉+ |g1〉 ⊗ |e2〉),

|α〉 =
1√
2

(|e1〉 ⊗ |g2〉 − |g1〉 ⊗ |e2〉). (IV.1)

The excitation probability for symmetric |s〉 and anti-
symmetric |α〉 states are:

|bs(t)|2 =
1

2
{|b1(t)|2 + |b2(t)|2 + 2Re[b1(t)b∗2(t)]},

|bα(t)|2 =
1

2
{|b1(t)|2 + |b2(t)|2 − 2Re[b1(t)b∗2(t)]}

(IV.2)

Due to lack of calculation for three atoms, we cannot
compare our results of two atoms with three atoms. But
we are just interested in general overview of two atoms
for this case.

FIG. 2(c) shows the transient excitation probabilities
for both symmetric and antisymmetric Dicke states. At
t=0, both of the states are equally distributed. But as
time increases and reached to a value slightly less than
2µs, the symmetric Dicke state reaches to it’s minimum
value i.e. zero and antismmetric Dicke state also reached
to it’s minimum value of around 38%. The reminiscent
value of antisymmetric Dicke state (or zero value of sym-
metric Dicke state) suggests the reminiscent of electro-
magnetically induced transparency or decoherence free
subspace.

B. Effect of retardation on entanglement

As we know concurrence is the measure of maximal
entanglement of a system, it’s evolution will give us how
the maximal entanglement of the system is evolving with
time. Eq. (III.38-40) gives the concurrence between two
atoms whereas Eq. (III.41) gives the average concurrence
for three atoms.

The behaviour of distribution of photon between atoms
and cavity as discussed in previous subsection can be
quantified by concurrence. At t=0, the photon was com-
pletely absorbed by the first atom resulting in zero con-
currence. At time slightly less than 2µs, there was maxi-
mum distribution of photons for two atoms case. We can
see a maximum value of concurrence (50%) at that time.
Similarly for three atoms case, the concurrence is 58%.

The slope of the concurrence curve is steeper in two
atoms case than three atoms case which means that the
distribution of photon in the system occurs rapidly in
two atoms case than in three atoms case. But the peak
value of concurrence is larger in three atoms case imply-
ing the photon gets more distributed in three atoms case
compared to two atoms case.
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FIG. 2. (a) The transient probability of first (blue) and second (red) atom being excited with the time. (b) The transient
probability of first (blue), second (red) and third (red) atom being excited with the time (the second the third atom curve
overlapped). (c) The transient excitation probability for symmetric Dicke state (red) with time and the transient excitation
probability for antisymmetric Dicke state (blue) with time. (d) The evolution of concurrence between two atoms with time.
(e) The evolution of average concurrence between three atoms with time. *Parameters used for those plots: constants are all
in SI unit, i.e. c = 2.998 × 108m/s, ~ = 1.054 × 10−34m2 · kg/s, ε0 = 8.854 × 10−12m−3kg−1s4A2; transition dipole moment
is assumed to be the product of the electron charge and the Bohr radius d = e × a0 = 1.602 × 10−19C × 5.2917 × 10−11m;
detuning ∆µ is assumed to be integer multiple of 2π, i.e. ∆µ = 2πµ.

V. Conclusion

Although we couldn’t reciprocate the results of the pa-
per exactly, the extended result we got for 3 atoms is
significant (in comparison to the 2 atoms result from the
same code). It suggests that the concurrence of the sys-
tem increases with increment in no. of atoms in the sys-
tem. In addition to that, when the system goes from 2
atoms to many, the correlation between the atoms hap-
pens such that complete deexcitation of first atom and
complete excitation of other atoms cannot happen in all
times.

Appendix
In the case of 2 atoms with single excitation and with-

out separation between them, MATLAB code for numer-
ical integration for the probability amplitude can be:

%using eq15 in [1]

clear all;close all;clc

%constant

%(we are not using correct parameters)

omegaa=6960*pi;

hbar=1.0545718*10^-34;

epsilon=8.854*10^12;

c=2.998*10^8;

x1=0;

x2=999*2.87*10^(-4);

tvec=linspace(0,4,100);

deltat=tvec(2)-tvec(1);

d=(1.602*10^(-19))*(5.2917*10^(-11));

%initialization

b1(1)=1;

b2(1)=0;

for a=0:99

bu(a+1,1)=0;

end

%evolution

for t=1:99 %time



12

for mu=0:99 %mode

g1(mu+1)=sqrt(2*pi*mu/(2*epsilon*hbar*c))...

*exp(1i*2*pi*mu*x1/c)*d;%gmu1

g2(mu+1)=sqrt(2*pi*mu/(2*epsilon*hbar*c))...

*exp(1i*2*pi*mu*x2/c)*d;%gmu2

e(mu+1)=exp(-1i*(2*pi*mu-omegaa)...

*tvec(t));%phase due to time

end

ddb1=-sum(g1.*conj(g1).*e)*b1(t)...

-sum(g1.*conj(g2).*e)*b2(t);

ddb2=-sum(g2.*conj(g1).*e)*b1(t)...

-sum(g2.*conj(g2).*e)*b2(t);

%"second derivative" - part being int in eq15

db1=ddb1*deltat*t;

db2=ddb2*deltat*t;

%first derivative

b1(t+1)=b1(t)+db1*deltat;

b2(t+1)=b2(t)+db2*deltat;

%evolution of pop after a time step

end

%plot

plot(tvec,abs(b1).^2);

hold on

plot(tvec,abs(b2).^2);

In the same case, using Maple for analytical solution:

restart

%constants (not correct)

A := 5.2917*(Pi/(2.998*(1.0545718*10^(-34)*8.85418)

*10^(-12)*10^8)*1.602)*10^(-19)*10^(-11);

%differential equation from eq15 in [1]

eq1 := diff(diff(b1(t), t), t) =

-A*(sum(u*b1(t), u = 1 .. 99)

+sum(u*b2(t), u = 1 .. 99));

eq2 := diff(diff(b2(t), t), t) =

-A*(sum(u*b1(t), u = 1 .. 99)

+sum(u*b2(t), u = 1 .. 99));

%initial conditions

ic := (D(b1))(0) = 0, (D(b2))(0) = 0,

b1(0) = 1, b2(0) = 0;

%solution

dsolve({eq1, eq2, ic})

b1 := 1/2+(1/2)*cos(10*sqrt(9418606766)*t)

b2 := -1/2+(1/2)*cos(10*sqrt(9418606766)*t)

%plot

plot({b1^2, b2^2}, t = 0 .. 0.1e-4)
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