3 Bound States
Stationary States
From last time:
$$
\bbox[silver]{i\hbar\frac{\partial\Psi(x,t)}{\partial t}=\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+U\right)\Psi(x,t).}
$$
To solve this equation, a standard technique is separation of variables. Let assume
$$
\Psi(x,t)=\psi(x)\phi(t).
$$
Then we have
$$
-\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\partial^2}{\partial x^2}\psi(x)+U(x)=i\hbar\frac{1}{\phi(t)}\frac{\partial}{\partial t}\phi(t)=C.
$$
The Temporal Part
$$
i\hbar\frac{1}{\phi(t)}\frac{\partial}{\partial t}\phi(t)=C.
$$
General solution:
$$
\phi(t)=\mathrm{e}^{-i(C/\hbar)t}.
$$
It turned out that $C=E$, so
$$
\Psi(x,t)=\psi(x)\mathrm{e}^{-i(E/\hbar)t}.
$$
Notice:
$$
\Psi^*(x,t)\Psi(x,t)=\psi^*(x)\mathrm{e}^{i(E/\hbar)t}\psi(x)\mathrm{e}^{-i(E/\hbar)t}=\psi^*(x)\psi(x).
$$
The probably density function is time independent. That is why the phrase "stationary state" is used.
The Spatial Part
Since $C=E$, the spatial part reduces to the time-independent Schrödinger Equation,
$$
\bbox[silver]{E\Psi(x,t)=\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+U\right)\Psi(x,t).}
$$
Well-Behaved Function
$$
\int_{\text{all space}}|\Psi(x,t)|^2dx=1.
$$