3.1 Case 1: The Infinite Well
An infinite well. Image from Wikipedia
Inside the well, the potential is zero, so we have
$$
-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x)=E\psi(x),\text{ for }0\le x\le L.
$$
General solution
$$
\psi(x)=A\sin(kx),
$$
where we define $k\equiv\sqrt{{2mE}/{\hbar^2}}$. Applying boundary condition $\psi(L)=0$ gives
$$
A\sin(kL)=0.
$$
Therefore
$$
kL=n\pi,\forall n\in\Bbb{Z}.
$$
This result implies that
$$
\begin{cases}E=\frac{n^2\pi^2\hbar^2}{2mL^2},\\\\\psi(x)=A\sin(\frac{n\pi x}{L}).\end{cases}
$$
Applying normalization condition gives
$$
\int_{\text{all space}}|\Psi(x,t)|^2dx=\int_0^L\left(A\sin\frac{n\pi x}{L}\right)^2dx=1.
$$
The integral equals $A^2L/2$, so we have
$$
A=\sqrt{\frac{2}{L}}.
$$
And here is the final result
$$
\bbox[silver]{\psi_n(x)=\begin{cases}\sqrt{\frac{2}{L}}\sin\frac{n\pi x}{L},&\text{ for }0\le x\le L\\\\0,&\text{else}\end{cases}}
$$
and
$$
\bbox[silver]{E_n=\frac{n^2\pi^2\hbar^2}{2mL^2}.}
$$
Practice Problems for 3.1
- Suppose now the infinite well is at $|x|< a/2$, determine the allowed energies and corresponding wave functions.