3.4 Expectation Values, and Uncertainties

3.4.1 Expectation Values

As discussed before, $|\psi(x)|^2$ can be treat as probability density. Thus the probability of finding the particle at an interval $(a,b)$ is given by a integration

$$ P=\int_a^b|\psi(x)|^2dx. $$

We may also find the expectation value of quantity with position dependence via

$$ \overline{f(x)}=\int_{\text{all space}}f(x)|\psi(x)|^2dx. $$

Or more precisely,

$$ \overline{O}=\int_{\text{all space}}\psi^*(x)\hat{O}\psi(x)dx, $$

if the observable is described by an operator.

3.4.2 Uncertainties

Uncertainty $\Delta O$ can be defined as

$$ (\Delta O)^2=\overline{(O-\overline{O})^2}, $$

which can be simplified to be

$$ \begin{align} \overline{(O-\overline{O})^2}&=\overline{(O^2+\overline{O}^2-2O\overline{O})}\\ &=\overline{O^2}+\overline{O}^2-2\overline{O}^2\\ &=\overline{O^2}-\overline{O}^2. \end{align} $$

Thus to find uncertainties, we normally find $\overline{O}$ and $\overline{O^2}$ first using

$$ \overline{O}=\int_{\text{all space}}\psi^*(x)\hat{O}\psi(x)dx, $$
$$ \overline{O^2}=\int_{\text{all space}}\psi^*(x)\hat{O}^2\psi(x)dx. $$

3.4.3 The Uncertainty Principle

In short, the uncertainty principle can be expressed as

$$ \Delta x\Delta p\ge\frac{\hbar}{2}. $$

Detailed derivation can be found in the Appendix I.