4.2 The Potential Barrier

Consider a potential barrier:

$$ U=\begin{cases} 0 & x<0\ \text{or}\ x>L\\ U_0 & 0<x<L. \end{cases} $$

As discussed in section 4.1, we can see that the wavefunction propagates in both direction in regions where $x<0$, and $0L$.

(i) $E>U_0$

Let the $\psi_I(x)$ be the wavefunction to the left of the barrier, $\psi_{II}$ be the wavefunction inside the barrier, and $\psi_{III}$ be the wavefunction to the right of the barrier. Using the result from section 4.1 directly, we have

$$ \begin{cases} \psi_I(x)=A\mathrm{e}^{ikx}+B\mathrm{e}^{-ikx},\\ \psi_{II}(x)=C\mathrm{e}^{ik'x}+D\mathrm{e}^{-ik'x},\\ \psi_{III}(x)=F\mathrm{e}^{ikx}, \end{cases} $$

where

$$ k=\sqrt{\frac{2mE}{\hbar^2}},\ \text{and}\ k'=\sqrt{\frac{2m(E-U_0)}{\hbar^2}}. $$

Applying boundary conditions

$$ \begin{cases} \psi_I(0)=\psi_{II}(0),\\ \psi_I'|_{x=0}=\psi_{II}'|_{x=0},\\ \psi_{II}(L)=\psi_{III}(L),\\ \psi_{II}'|_{x=L}=\psi_{III}'|_{x=L}, \end{cases} $$

gives

$$ \begin{cases} A+B=C+D,\\ k(A-B)=k'(C-D),\\ C\mathrm{e}^{ik'L}+D\mathrm{e}^{-ik'L}=F\mathrm{e}^{ikL},\\ ik'(C\mathrm{e}^{ik'L}+D\mathrm{e}^{-ik'L})=ikF\mathrm{e}^{ikL}. \end{cases} $$

Similar to section 4.1, we can find the reflection and transmission probabilities as following

$$ R=\frac{\sin^2(k'L)}{\sin^2(k'L)+4{k'^2k^2}/{(k^2-k'^2)^2}}, $$
$$ T=\frac{4{k'^2k^2}/{(k^2-k'^2)^2}}{\sin^2(k'L)+4{k'^2k^2}/{(k^2-k'^2)^2}}. $$

 

Or in terms of $E$ and $U_0$

$$ \bbox[silver]{R=\frac{\sin^2[\sqrt{2m(E-U_0)}L/\hbar]}{\sin^2[\sqrt{2m(E-U_0)}L/\hbar]+4{(E/U_0)}/{[(E/U_0)-1]}},} $$
$$ \bbox[silver]{T=\frac{4{(E/U_0)}/{[(E/U_0)-1]}}{\sin^2[\sqrt{2m(E-U_0)}L/\hbar]+4{(E/U_0)}/{[(E/U_0)-1]}}.} $$

Notice the reflection probability can be 0, when

$$ \frac{\sqrt{2m(E-U_0)}}{\hbar}L=n\pi. $$

This occurs when the waves that are reflected at $x=0$ and at $x=L$ destructively interfere in the region where $x<0$. A classical analogy can be thin-film interference.

(ii) $E<U_0$

In side the barrier, the wavefunction now becomes

$$ \psi_{II}(x)=C\mathrm{e}^{\alpha x}+D\mathrm{e}^{-\alpha x}, $$

where $\alpha=\sqrt{2m(U_0-E)/\hbar^2}$.

With procedures similar as case (i), the reflection and transmission probabilities in this case are

$$ \bbox[silver]{R=\frac{\sinh^2[\sqrt{2m(E-U_0)}L/\hbar]}{\sinh^2[\sqrt{2m(E-U_0)}L/\hbar]+4{(E/U_0)}/{[(E/U_0)-1]}},} $$
$$ \bbox[silver]{T=\frac{4{(E/U_0)}/{[(E/U_0)-1]}}{\sinh^2[\sqrt{2m(E-U_0)}L/\hbar]+4{(E/U_0)}/{[(E/U_0)-1]}}.} $$

Notice that even when particle have insufficient energy to overcome the potential barrier, it still has probability to transmit through. This is referred to as tunneling.